

MAT2051 Discrete Mathematics Lecture and Tutorial on Logical Operators

Professor Lawrence Jerome Capella University Adjunct Instructor

Professor Lecture and Tutorial

Logical Operators

Lawrence Jerome Adjunct Instructor

Trouble with Truth Tables

- There are a fair number of rules to remember
- There are two ways to build Truth Tables
 - \circ Manually
 - Using Excel Logical
 Operators

There are six basic Tru	th
Tables to remember	
o AND	Λ
○ OR	V
○ NOT	٦
○ EXCLUSIVE OR	\oplus
O CONDITIONAL (IMPLIES)	\rightarrow
O BICONDITIONAL	\leftrightarrow

MAT2051 Discrete Math

MANUAL TRUTH TABLES

Professor Lecture and Tutorial

Logical Operators

Lawrence Jerome Adjunct Instructor

How to Begin

Begin your truth tables the same systematic way

Two Propositions

TT, TF, FT, FF

Three Propositions

TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF

Professor Lecture and Tutorial

Logical Operators

Lawrence Jerome Adjunct Instructor 4

AND Truth Table

Truth Table

р	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Key Points

• Just one **TRUE** row!

Both premises must be true, for the conclusion to be true.

OR Truth Table

Truth Table

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Key Points

• Three **TRUE** rows!

Both premises must be false, for the conclusion to be false.

NOT Truth Table

Truth Table

р	−p
Т	F
Т	F
F	Т
F	Т

Key Points

• T and F become opposites

EXCLUSIVE OR Truth Table

Truth Table

р	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Key Points

• Two **TRUE** rows!

Both true rows are in the middle.

CONDITIONAL (IMPLIES) Truth Table

Truth Table

р	q	$p \rightarrow q$
Т	Т	Т
т	F	F
F	Т	Т
F	F	Т

Key Points

- Three **TRUE** rows!
- Second row False!

When the consequent is FALSE, the antecedent must be FALSE too for the proposition to be TRUE.

BICONDITIONAL Truth Table

Truth Table

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Key Points

- Two **TRUE** rows!
- Middle rows False!

The consequent and antecedent must both be the **SAME** for the proposition to be TRUE.

MAT2051 Discrete Math

LOGICAL OPERATORS IN EXCEL

Professor Lecture and Tutorial

Logical Operators

Lawrence Jerome Adjunct Instructor 11

Using Microsoft Excel

- Excel can perform a lot of mathematical operations and calculations for us.
- Unfortunately, Excel only has three of the six basic logical operators, AND, OR, NOT.
- But we can build the missing three with the basic three.

Three Logical Operators

The three logical operator/functions that allow us construct Truth Tables in Excel:

- =OR(): The OR function
- =AND(): The AND function
- =NOT(): The NOT function

Note:

- Both the OR and AND functions take two parameters TRUE or FALSE =OR(TRUE,FALSE).
- The NOT function takes only one parameter =NOT(TRUE).

In building Truth Tables, write out TRUE and FALSE instead of T and F. Here's the basic three in operation:

	٨	R	C	D	F	F	G	н	1		K	1	Т
-	^	0		0			0			,	N		۴
16													Ļ
17		р	q	OR(p,q)	AND(p,q)	NOT(p)		Formul	as:				
18		TRUE	TRUE	TRUE	TRUE	FALSE							
19		TRUE	FALSE	TRUE	FALSE	FALSE		OR(p,q), cell D18:	=OR(B18,0	:18)		
20		FALSE	TRUE	TRUE	FALSE	TRUE							
21		FALSE	FALSE	FALSE	FALSE	TRUE		OR(p,q), cell D21:	=OR(B21,0	.21)		
22								AND(n	a) cellE18	- = AND(B1	8 (18)		
23								Cite(p)	q), cen ero	Ano(bi	0,010)		
24								AND(p	q), cell E21	: =AND(B2	1,C21)		
25													
26								NOT(p)	, cell F18: +	=NOT(B18)			
27													
28								NOT(p)	, cell F21: :	=NOT(B21)			
29													
20													T

For instance, for the OR operator, all you have to do is type =OR (then point to the first cell, type a comma, then point to the second cell, then type) Enter.

Once you have the first formula typed, you can use the fill handle to copy the formula down the rest of the column. Excel fills in the answer.

The most important logical operator Excel does not provide is the IMPLIES or CONDITIONAL operator, but fortunately, we have a fairly easy logical equivalent:

 $p \to q \equiv \neg p \lor q$

In Excel, we write this as =OR(NOT(p),q).

	E11	-		$f_{x} = OR($	NOT(B11),C11)			
1	А	В	С	D	E	F	G	Н
1								
9	Logical Eq	uivalence	of IMPLIES	(CONDITIC	ONAL) Operator:			
10		р	q	P>q	OR(NOT(p),q)			
11		TRUE	TRUE	TRUE	TRUE	Formula:		
12		TRUE	FALSE	FALSE	FALSE			
13		FALSE	TRUE	TRUE	TRUE	cell E11:		
14		FALSE	FALSE	TRUE	TRUE	=OR(NOT	r(B11),C11)	
15								

The EXCLUSIVE OR and BICONDITIONAL logical equivalences are not as easy. The EXCLUSIVE OR :

$p \oplus q \equiv (p \land \neg q) \lor (\neg p \land q)$

In Excel, we write this as = OR(AND(p,NOT(q)),AND(NOT(p),q)

	E19	•	. (•	<i>f</i> _x =0	DR(AND(B19,NOT(C19)),AND(NOT(B19),C19))
4	А	В	С	D	E
1					
17	Logical Ec	uivalence	of Exclusiv	e OR Op	erator:
18	2-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	р	q	P XOR	q OR(AND(p,NOT(q)),AND(NOT(p),q)
19		TRUE	TRUE	FALSE	FALSE
20	1	TRUE	FALSE	TRUE	TRUE
21		FALSE	TRUE	TRUE	TRUE
22		FALSE	FALSE	FALSE	FALSE
23					
24				F	ormula:
25					
26				CE	ell E19:
27				=	OR(AND(B19,NOT(C19)),AND(NOT(B19),C19))
28					

Professor Lecture and Tutorial

Logical Operators

The BICONDITIONAL operator has a similar logical equivalence

$p \leftrightarrow q \equiv (\neg p \lor q) \land (p \lor \neg q)$

In Excel, we write this as =AND(OR(NOT(p),q),OR(p,NOT(q))

	E33		0	fx =Al	ND(OR(NOT(B33),C33),OR(B33,NOT(C33)))	
4	А	В	С	D	E	F
1						
31	Logical Ec	uivalence	of BICOND	ITIONAL	Operator:	
32		р	q	P IFF q	AND(OR(NOT(p),q),OR(p,NOT(q))	
33		TRUE	TRUE	TRUE	TRUE	
34		TRUE	FALSE	FALSE	FALSE	2
35		FALSE	TRUE	FALSE	FALSE	
36		FALSE	FALSE	TRUE	TRUE	
37						
38				Fo	rmula:	
39						
40				cel	II E33:	
41				=0	R(AND(B19,NOT(C19)),AND(NOT(B19),C19))	
42	•					

Professor Lecture and Tutorial

Logical Operators

Now, you not only know how to do all logical operations in Excel, you also know how to do logical equivalences!

Logical Operators