
File: SPIMQuickRef.docx Page 1 of 4

SPIM Instruction Set

Instructions and PseudoInstructions
This list of MIPS instructions and pseudoinstructions is not complete. Notably missing are some
of the Floating Point and other coprocessor instructions.

• - Indicates an actual MIPS instruction. Others are SPIM PseudoInstructions.

 Instruction Function

• add Rd, Rs, Rt Rd = Rs + Rt (signed)
• addu Rd, Rs, Rt Rd = Rs + Rt (unsigned)
• addi Rd, Rs, Imm Rd = Rs + Imm (signed)
• sub Rd, Rs, Rt Rd = Rs - Rt (signed)
• subu Rd, Rs, Rt Rd = Rs - Rt (unsigned)
• div Rs, Rt lo = Rs/Rt, hi = Rs mod Rt (integer division, signed)
• divu Rs, Rt lo = Rs/Rt, hi = Rs mod Rt (integer division, unsigned)
 div Rd, Rs, Rt Rd = Rs/Rt (integer division, signed)
 divu Rd, Rs, Rt Rd = Rs/Rt (integer division, unsigned)
 rem Rd, Rs, Rt Rd = Rs mod Rt (signed)
 remu Rd, Rs, Rt Rd = Rs mod Rt (unsigned)
 mul Rd, Rs, Rt Rd = Rs * Rt (signed)
• mult Rs, Rt hi, lo = Rs * Rt (signed, hi = high 32 bits, lo = low 32 bits)
• multu Rd, Rs hi, lo = Rs * Rt (unsigned, hi = high 32 bits, lo = low 32 bits)

• and Rd, Rs, Rt Rd = Rs • Rt
• andi Rd, Rs, Imm Rd = Rs • Imm
 neg Rd, Rs Rd = -(Rs)
• nor Rd, Rs, Rt Rd = (Rs + Rt)’
 not Rd, Rs Rd = (Rs)’
• or Rd, Rs, Rt Rd = Rs + Rt
• ori Rd, Rs, Imm Rd = Rs + Imm
• xor Rd, Rs, Rt Rd = Rs Rt
• xori Rd, Rs, Imm Rd = Rs Imm

• sll Rd, Rt, Sa Rd = Rt left shifted by Sa bits
• sllv Rd, Rs, Rt Rd = Rt left shifted by Rs bits
• srl Rd, Rs, Sa Rd = Rt right shifted by Sa bits
• srlv Rd, Rs, Rt Rd = Rt right shifted by Rs bits

 move Rd, Rs Rd = Rs
• mfhi Rd Rd = hi
• mflo Rd Rd = lo
 li Rd, Imm Rd = Imm
• lui Rt, Imm Rt[31:16] = Imm, Rt[15:0] = 0

• lb Rt, Address(Rs) Rt = byte at M[Address + Rs] (sign extended)
• sb Rt, Address(Rs) Byte at M[Address + Rs] = Rt (sign extended)
• lw Rt, Address(Rs) Rt = word at M[Address + Rs]
• sw Rt, Address(Rs) Word at M[Address + Rs] = Rt

• slt Rd, Rs, Rt Rd = 1 if Rs < Rt, Rd = 0 if Rs Rt (signed)

File: SPIMQuickRef.docx Page 2 of 4

• slti Rd, Rs, Imm Rd = 1 if Rs < Imm, Rd = 0 if Rs Imm (signed)
• sltu Rd, Rs, Rt Rd = 1 if Rs < Rt, Rd = 0 if Rs Rt (unsigned)

• beq Rs, Rt, Label Branch to Label if Rs = Rt
 beqz Rs, Label Branch to Label if Rs = 0
 bge Rs, Rt, Label Branch to Label if Rs Rt (signed)
• bgez Rs, Label Branch to Label if Rs 0 (signed)
• bgezal Rs, Label Branch to Label and Link if Rs Rt (signed)
 bgt Rs, Rt, Label Branch to Label if Rs > Rt (signed)
 bgtu Rs, Rt, Label Branch to Label if Rs > Rt (unsigned)
• bgtz Rs, Label Branch to Label if Rs > 0 (signed)
 ble Rs, Rt, Label Branch to Label if Rs Rt (signed)
 bleu Rs, Rt, Label Branch to Label if Rs Rt (unsigned)
• blez Rs, Label Branch to Label if Rs 0 (signed)
• bgezal Rs, Label Branch to Label and Link if Rs 0 (signed)
• bltzal Rs, Label Branch to Label and Link if Rs < 0 (signed)
 blt Rs, Rt, Label Branch to Label if Rs < Rt (signed)
 bltu Rs, Rt, Label Branch to Label if Rs < Rt (unsigned)
• bltz Rs, Label Branch to Label if Rs < 0 (signed)
• bne Rs, Rt, Label Branch to Label if Rs Rt
 bnez Rs, Label Branch to Label if Rs 0

• j Label Jump to Label unconditionally
• jal Label Jump to Label and link unconditionally
• jr Rs Jump to location in Rs unconditionally
• jalr Label Jump to location in Rs and link unconditionally

System I/O Services: syscall

Service Code in $v0 Argument(s) Result(s)
Print Integer 1 $a0 = number to be printed
Print Float 2 $f12 = number to be printed
Print Double 3 $f12 = number to be printed
Print String 4 $a0 = address of string in memory
Read Integer 5 number returned in $v0
Read Float 6 number returned in $f0
Read Double 7 number returned in $f0
Read String 8 $a0 = address of input buffer in memory
 $a1 = length of buffer (n)
Sbrk 9 $a0 = amount address in $v0
Exit 10

File: SPIMQuickRef.docx Page 3 of 4

Registers

By convention, many MIPS registers have special purpose uses. To help clarify this, SPIM
defines aliases for each register that represent its purpose. The following table lists these aliases
and the commonly accepted uses for the registers.

Register Number Usage
zero 0 Constant 0
at 1 Reserved for the assembler
v0 2 Used for return values from function calls.
v1 3
a0 4 Used to pass arguments to procedures and functions.
a1 5
a2 6
a3 7
t0 8 Temporary (Caller-saved, need not be saved by called procedure)
t1 9
t2 10
t3 11
t4 12
t5 13
t6 14
t7 15
s0 16 Saved temporary (Callee-saved, called procedure must save and restore)
s1 17
s2 18
s3 19
s4 20
s5 21
s6 22
s7 23
t8 24 Temporary (Caller-saved, need not be saved by called procedure)
t9 25
k0 26 Reserved for OS kernel
k1 27
gp 28 Pointer to global area
sp 29 Stack pointer
fp 30 Frame pointer
ra 31 Return address for function calls.

Decimal Hex Octal Binary Decimal Hex Octal Binary

0 0 0 0000 8 8 10 1000
1 1 1 0001 9 9 11 1001
2 2 2 0010 10 A 12 1010
3 3 3 0011 11 B 13 1011
4 4 4 0100 12 C 14 1100
5 5 5 0101 13 D 15 1101
6 6 6 0110 14 E 16 1110
7 7 7 0111 15 F 17 1111

File: SPIMQuickRef.docx Page 4 of 4

Floating Point Instructions and PseudoInstructions
The MIPS floating point coprocessor is coprocessor number 1. It operates on single precision
(32-bit) and double precision (64-bit) floating point numbers. This coprocessor has its own
registers, numbered $f0-$f31. Even numbered registers are used for double precision operations.

• - Indicates an actual MIPS instruction. Others are SPIM pseudo instructions.

 Instruction Function

• abs.d FRdest, FRsrc FRdest = | FRsrc |
• abs.s FRdest, FRsrc FRdest = | FRsrc |

• add.d FRdest, FRsrc1, FRsrc2 FRdest = FRsrc1 + FRsrc2
• add.s FRdest, FRsrc1, FRsrc2 FRdest = FRsrc1 + FRsrc2

• c.eq.d FRsrc1, FRsrc2 Set flag on FRsrc1 = FRsrc2
• c.eq.s FRsrc1, FRsrc2 Set flag on FRsrc1 = FRsrc2

• c.le.d FRsrc1, FRsrc2 Set flag on FRsrc1  FRsrc2
• c.le.s FRsrc1, FRsrc2 Set flag on FRsrc1  FRsrc2

• c.lt.d FRsrc1, FRsrc2 Set flag on FRsrc1 < FRsrc2
• c.lt.s FRsrc1, FRsrc2 Set flag on FRsrc1 < FRsrc2

• cvt.d.s FRdest, FRsrc Double ← Single
• cvt.d.w FRdest, FRsrc Double ← Integer

• cvt.s.d FRdest, FRsrc Single ← Double
• cvt.s.w FRdest, FRsrc Single ← Integer

• cvt.w.d FRdest, FRsrc Integer ← Double
• cvt.w.s FRdest, FRsrc Integer ← Single

• div.d FRdest, FRsrc1, FRsrc2 FRdest = FRsrc1 / FRsrc2
• div.s FRdest, FRsrc1, FRsrc2 FRdest = FRsrc1 / FRsrc2

 l.d FRdest, address FRdest = address
 l.s FRdest, address FRdest = address

• mov.d FRdest, FRsrc FRdest = FRsrc
• mov.s FRdest, FRsrc FRdest = FRsrc

• mul.d FRdest, FRsrc1, FRsrc2 FRdest = FRsrc1 * FRsrc2
• mul.s FRdest, FRsrc1, FRsrc2 FRdest = FRsrc1 * FRsrc2

• neg.d FRdest, FRsrc FRdest = - FRsrc
• neg.s FRdest, FRsrc FRdest = - FRsrc

 s.d FRdest, address address ← FRdest
 s.s FRdest, address address ← FRdest

• sub.d FRdest, FRsrc1, FRsrc2 FRdest = FRsrc1 – FRsrc2
• sub.s FRdest, FRsrc1, FRsrc2 FRdest = FRsrc1 – FRsrc2

• bc1t Label Branch conditional; if flag is True; to Label
• bc1f Label Branch conditional; if flag is False; to Label
 (1 denotes coprocessor 1, the floating point coprocessor)

• mfc1 Rdest, FPsrc Move contents of register FRsrc to CPU register Rdest
• mtc1 Rsrc, FPdest Move contents of CPU register Rsrc to register FPdest

