Introduction to Programming and Problem Solving Using C++	

OOD - Object Oriented Design

In OOD we focus on modeling the objects in a problem, the behavior of these objects as they interact, and the data that they must contain. In C++ we implement behavior as methods (member functions) and data as public and private variables.
Tic-Tac-Toe
Tic-Tac-Toe is a simple 2-player game that has a 3 x 3 board. There are two symbols used on the board, X and O, that represent the positions of the opponents. Player alternately place a single symbol on the board until one or the other has a "Win" -- three X's or O's in a row, horizontally, vertically or diagonally; or a "Draw" (aka "a cat's game") exists with neither player having a Win.
From this description we can make the following observations:
T1) Tic-Tac-Toe is a game;
T2) The game has a 3 x 3 board;
T3) Each cell of the board may contain (has a): empty, X, O;
T4) At any time the WinState of the board may be (has a): Playing, Win-X, Win-O, Draw;
T5) There must be a mechanism (method) for asking for moves and recording them (i.e., a routine that "plays the game).
Implementation
Now we may design a class that implements our observations. Note that the "is a" relationship a class, and the "has a" relationship data or function within the class.
Battleship
We can extend our notion to the game of Battleship -- a simple 2-player game that has a 5 x 5 board. The first player randomly places 4-cell long battleship on the board, hidden from view, in either horizontal or vertical orientation. The second player "fires" missiles at the board, attempting to sink the battleship. Hits are recorded as X's, misses as O's. One keeps track of the number of missiles fired, the number of hits, and the number of the game (several games usually are played). The battleship is sunk when missiles have struck all its cells.
From this description we can make the following observations:
B1) BattleshipGame is a game;
B2) The game has a 5 x 5 board;
B3) The board has a battleship randomly placed on it;
B4) Each cell of the board may contain (has a): empty, X (a hit), O (a miss);
B5) The game has statistics that it must track (number of missiles fired, hits, game number);
B6) There must be mechanisms for asking for missile coordinates, recording them, asking if the battleship is hit or sunk (has data);
B7) There must be a mechanism for displaying the current state of the game.
S1) A Battleship is a ship;
S2) A battleship has 4 cell coordinates;
S3) Each battleship cell may be (has a state) not-hit or hit;
S4) A battleship has a means to tell you if a coordinate hits it;
S5) A battleship has a means to tell you if it is sunk or afloat.
Implementation
[bookmark: _GoBack]Now we may design a class that implements our observations. Again, note that the "is a" relationship a class, and the "has a" relationship data or function within the class.

Introduction to Programming and Problem Solving Us ing C++ OOD - Object Oriented Design In OOD we focus on modeling the objects in a problem, the behavior of these objects as they interact, and the data that they must contain . In C++ we implement behavior as methods (member functions) and data as pu blic and private variables . Tic - Tac - Toe Tic - Tac - Toe is a simple 2 - player game that has a 3 x 3 board . There are two symbols used on the board , X and O , that represent the positions of the opponents . Player alternately place a single symbol on the boa rd until one or the other has a "Win" -- three X's or O's in a row, horizontally, vertically or diagonally; or a "Draw" (aka "a cat's game") exists with neither player having a Win. From this description we can make the following observations: T1) Tic - Tac - Toe is a game; T2) The game has a 3 x 3 board; T3) Each cell of the board may contain (has a) : empty, X, O; T4) At any time the WinState of the board may be (has a) : Playing, Win - X, Win - O, Draw; T5) There must be a mechanism (method) for asking for moves and recording them (i.e., a routine that "plays the game). Implementation Now we may design a class that implements our observations . Note that the "is a" relationship  a class, and the "has a" relationship  data or function within the class. Battleship We can extend our notion to the game of Battleship -- a simple 2 - player game that has a 5 x 5 board . The first player randomly places 4 - cell long battleship on the board, hidden from view, in either horizontal or vertical orientation . The second player "fires" missiles at the board, attempting to sink the battleship . Hits are recorded as X's, misses as O's . One keeps track of the number of missiles fired, the number of hits, and the number of the game (several games usually are played) . The battleship is sunk when missiles have struck all its cells . From this description we can make the following observations: B1) BattleshipGame is a game; B2) The game has a 5 x 5 board; B3) The board has a battleship randomly placed on it; B4) Each cell of the board may contain (has a) : empty, X (a hit), O (a miss); B5) The game has statistics that it must track (number of missiles fired, hits, game number); B6) There must be mechanisms for asking for missile coordinates, recording them, asking i f the battl eship is hit or sunk (has data); B7) There must be a mechanism for displaying the current state of the game. S1) A Battleship is a ship; S2) A battleship has 4 cell coordinates; S3) Each battleship cell may be (has a state) not - hit or hit; S4) A battleship has a means to tell you if a coordinate hits it; S5) A battleship has a means to tell you if it is sunk or afloat. Implementation Now we may design a class that implements our observations . Again, n ote that the "is a" relationship  a class, and the "has a" relationship  dat a or function within the class.

