

1 of 2

iCarnegie Java Code Conventions Quick Reference http://java.sun.com/docs/codeconv/
Indentation
1. Use four spaces as the unit of indentation.
2. Use tabs or spaces to indent, not a mixture of

the two. (Exception: A mixture can be used
when wrapping lines).

3. Do not indent top-level classes and interfaces.
4. Indent variables, methods, and named inner

classes one level.
5. Indent the body of a method one level.

Braces for methods, classes, and interfaces
1. Put opening brace on same line as declaration.
2. Put closing brace on new line and indent it to

the level of the matching declaration.
class Example {

 private void doTask() {

 statements;
 }
}

Miscellaneous
1. Avoid lines longer than 80 characters.
2. One statement per line.
3. One declaration per line.
4. Initialize variables when they are declared

except when the initial value is unknown.
5. If a control structure—like an if-statement or a

for-loop—contains a single statement, the
single statement should be enclosed in braces.

6. Use the class name, not a reference, to access
static methods and variables.

7. Use parenthesis to clarify the order of
evaluation in complex expressions.

8. Avoid coding literal constants directly. Use a
well-named symbolic constant instead.
(Exception: 0, 1, and –1 are acceptable.)

Implementation comments
1. Do not add comments that state the obvious.
2. A blank line should precede a comment.
3. Minimize the need for comments by making

the code self-documenting with appropriate
name choices and an explicit logical structure.

4. Comments should provide additional
information that is not readily apparent in the
code itself. Comments that present an
overview of a code block can be useful.

// single-line comment
/* single-line comment */
/*
 * block comment
 */
statement; // trailing comment

Javadoc comments:
1. Use to document classes, interfaces,

methods, and variables (with class-scope).
2. Should describe the entity being documented

from an implementation-free perspective.
/**
 * Javadoc comment
 */
/** Javadoc comment */

Wrapping lines
When a statement will not fit on a single line:
1. Break after a comma
2. Break before a binary operator
3. Prefer high-level breaks to low-level breaks
4. Align new line with beginning of expression

(or argument list) on previous line:
a = b * (c + d – e)
 + (f / g);
x = getValue(a + b + c,
 d + e + f);
5. If these rules lead to confusing code or code

that’s jammed up against the right margin,

Naming conventions
1. Names should be words or word phrases. Keep

names short but descriptive. Avoid abbreviations.
2. Classes and interfaces: Use nouns, in mixed

case with first letter of each word capitalized.
Examples: TextField and MouseListener

3. Methods: Use verbs, in mixed case with first
letter lowercase and first letter of each internal
word capitalized. Example: setBackground

4. Variables: Use nouns, in mixed case with first
letter lowercase and first letter of each internal
word capitalized. Example: fontSize

5. Constants: All uppercase with words separated
by underscores. Example: EXIT_ON_CLOSE

Blank lines
Use one blank line:
1. Before a comment
2. Between methods
3. After a method header
4. After a block of local variable declarations
5. Between logical sections of code so that

logically-related statements are grouped

Spaces
Use a space:
1. Between a keyword and a left parenthesis
2. After commas in argument and parameter lists
3. To separate a binary operator from its operands

(see exception below)
4. To separate a ternary operator from its operands.
5. Between initialization, expression, and update

parts of a for-loop
6. After a cast

Do not use a space:
1. Between the dot operator (.) and its operands
2. Between a unary operator and its operand
3. Between a method name and a left parenthesis

2 of 2

 indent 8 spaces (2 tabs) instead.
Return statements
1. Do not enclose the return value in parentheses

unless they make the return value more
obvious in some way.

2. Make the structure of your code match its
intent:

Replace this if-else statement:
if (booleanExpression) {
 return true;
} else {
 return false;
}
with a return statement:
return booleanExpression;
Replace this code fragment:
if (condition) {
 return x;
}
return y;
with a return statement:
return (condition ? x : y);

Ternary statements
The following formats are acceptable:
a = condition ? b : c;
a = condition ? b
 : c;
a = condition
 ? b
 : c;
1. Parentheses around condition are optional.
2. Use parentheses when the condition is a binary

expression:
absoluteValue = (x >= 0) ? x : -x;
3. Avoid nested ternary statements.
4. Use conditional operator, not if-else statement,

when assigning a value to a variable:
a = condition ? b : c;

while statements
Use the following format:
while (condition) {
 statements;
}

for statements
Use the following format:
for (initialization; condition; update) {
 statements;
}
Declare the loop control variable inside for-loop:
for (int i = 0; i < size; ++i) {
 statements;
}

do-while statements
Use the following format:
do {
 statements;
} while (condition);

if-else statements
Use the following formats:
if (condition) {
 statements;
}
if (condition) {
 statements;
} else {
 statements;
}
if (condition) {
 statements;
} else if (condition) {
 statements;
} else {
 statements;
}

switch statements
Use the following format:
switch (condition) {
case ABC:
 statements;
 /* falls through */

case DEF:
 statements;
 break;

default:
 statements;
 break;
}
1. Always include default case.
2. Use the comment line /* falls through

*/ when the case label does not have
a break statement.

try-catch blocks
Use the following format:
try {
 statements;
} catch (ExceptionClass e) {
 statements;
}

Line wrapping for if-statements
Use 8 space rule (2 tabs) when wrapping
an if-statement so body is easier to see:
if ((a && b)
 || (c && d)
 || (e && f)) {
 statements;
}

