
901 San Antonio Road
Palo Alto, CA 94303
1 (800) 786.7638

Sun Microsystems, Inc.

+1.512.434.1511

A Coding Style Guide for Java
™

WorkShop
™

and Java
™

Studio
™

Programming

The importance and benefits of a consistent coding style are well known. This document describes
a set of coding standards and recommendations for programs written in the Java™ language. It is
intended for all Java software developers. It contains no material proprietary to Sun, and may be
freely distributed outside Sun as well.

Feedback in the form of corrections or suggestions for improvement are welcomed. Comments may
be sent to achut.reddy@sun.com.

Author: Achut Reddy
Authoring and Development Tools

Sun Microsystems, Inc.

20 May 1998

Please

Recycle

Copyright 1998 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, JavaSoft, Java Studio, Java WorkShop, JDK, and The Network Is The Computer are trademarks or

registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are

trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are

based upon an architecture developed by Sun Microsystems, Inc. Information subject to change without notice.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR

52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Contents

1.0 Introduction ..1

1.1 Background ...2

1.2 Acknowledgments ...2

2.0 Source Files ...3

2.1 Source-File Naming ...3

2.2 Source-File Organization ..3

2.2.1 Copyright/ID block comment4

2.2.2 package declaration ...4

2.2.3 import declarations ...4

2.2.4 class/interface declarations ...5

3.0 Naming Conventions ..6

3.1 Package Naming ..6

3.2 Class/Interface Naming ..6

3.3 Field Naming ..7

3.4 Method Naming ...8

3.5 Local Variable Naming ...8

3.6 Statement Label Naming ..8

4.0 White Space Usage ..10

4.1 Blank Lines ..10

4.2 Blank Spaces ...10

4.2.1 A single blank space (not tab) should be used:10

4.2.2 Blanks should not be used: ...11

4.3 Indentation ..11

4.4 Continuation Lines ..12

5.0 Comments ...13

5.1 Documentation Comments ...13

5.2 Block Comments ..14

5.3 Single-Line Comments ..15

6.0 Classes ...16

6.1 Class Body Organization ..17

6.1.1 Member access levels ..17

6.1.2 Member documentation comments17

6.1.3 Class and instance variable field declarations18

6.1.4 Static initializer ..18

6.1.5 Static member inner class declarations18

6.1.6 Static method declarations ...18

6.1.7 Instance initializer ...19

6.1.8 Constructor declarations ..19

6.1.9 Instance method declarations19

6.2 Method Declarations ...19

6.3 Local Inner Classes ..20

6.4 Anonymous Inner Classes ..20

6.5 Anonymous Array Expressions and Array Initializers21

7.0 Interfaces ...23

7.1 Interface Body Organization ..23

8.0 Statements ...24

8.1 Simple Statements ..24

8.1.1 Assignment and expression statements24

8.1.2 Local variable declarations ...24

8.1.3 Array declarations ...24

8.1.4 return statement ...25

8.2 Compound Statements ..25

8.2.1 Braces style ...25

8.2.2 Allowed exception to braces rule25

8.2.3 if statement ...26

8.2.4 for statement ...26

8.2.5 while statement ..26

8.2.6 do-while statement ..26

8.2.7 switch statement ..26

8.2.8 try statement ...27

8.2.9 synchronized statement ..27

8.3 Labeled Statements ..27

Appendix A: Java Coding Style Example ..28

Java Coding Style Quick Reference Sheet ..30

References ...32

1.0 Introduction

This document describes a set of standards and guidelines for developing programs in the

Java
™

language (as specified in [3]) with a consistent style. It is meant to be used not only by

programmers specifically writing Java code, but also by programmers creating programs

which automatically generate Java code.

The importance and benefits of a consistent coding style are well known. A consistent style:

■ Improves the readability, and therefore, maintainability of code.

■ Facilitates sharing of code among programmers, especially teams of programmers working

on the same project.

■ Allows easier development of automated tools to assist in program development, such as tools

which automatically format or pretty-print source code.

■ Makes it easier to conduct code reviews, another software engineering process with well-

known benefits. In turn, a practice of regular code reviews can help enforce a consistent style.

■ Saves development time, once the guidelines are learned, by enabling programmers to focus

on the semantics of the code, rather than spend time trying to determine what particular

format is appropriate for a given situation.

These standards however, are not meant to be rigidly enforced without exception. This document

does not cover all possible situations. Experience and informed judgement should be used

whenever doubt exists. Consistency of coding style is more important than using a particular

style.

These standards are general, not specific to any particular project. Project teams may choose to

specify a narrower set of additional guidelines for their project, which includes these guidelines

as a subset.

Note – This document has been updated to cover all features of version 1.1 of the Java language.
1

1.1 Background

The guidelines presented here were not created in a vacuum. In the process of creating this

document, the author has scanned literally hundreds of thousands of lines of existing Java code to

determine the styles being used in current practice. As with most languages, the predominant

style is heavily influenced by the style of the original designers and early developers. As a result,

for example, JDK
™

software (about 600,000 lines of Java source) already largely conforms to this

style guide.

The author has also used his extensive experience with C and C++ coding style issues gained

from several years of programming as well as from authoring several previous style documents

(such as [1]).

1.2 Acknowledgments

This document builds upon and borrows heavily from several sources listed in the References

section at the end of this document, especially [1], [2], and [3].

The language terminology used here, as well as several suggested naming conventions, are taken

directly from [3].
2 A Coding Style Guide for Java WorkShop and Java Studio Programming

2.0 Source Files

On file-based host implementations of Java, the compilation unit is a Java source file. A Java

source file should contain only one public class or interface definition, although it may it also

contain any number of non-public support classes or interfaces. Source files should be kept to less

than 2000 lines. Files longer than this become difficult to manage and maintain. Exceeding this

limit is a good indication that the classes or interfaces should probably be broken up into smaller,

more manageable units.

For all but the most trivial projects, source files should be kept under a version management

system (such as SCCS or RCS).

2.1 Source-File Naming

Java source-file names are of the form:

ClassOrInterfaceName. java

ClassOrInterfaceName is exactly the name of the public class or interface defined in the source file

(and therefore, follows all the naming conventions for classes; see section 3.2 for more details).

The file name suffix is always .java except on systems that support only three-character

extensions; on such systems, the suffix is .jav .

JAR (Java Archive) file names are of the form:

ArchiveName. jar

or

ArchiveName. zip

2.2 Source-File Organization

A Java source file should contain the following elements in the following order:

1. Copyright/ID block comment

2. package declaration

3. import declarations

4. One or more class/interface declarations

At least one blank line should separate all of these elements.
3

2.2.1 Copyright/ID block comment

Every source file should start with a block comment containing version information and

a standard copyright notice. The version information should be in the following format:

@(#) module version date [firstname lastname]

This can be generated automatically by using the SCCS ID string:

%W% %E%

module is the name of the file. version is the source-file version used by the version management

system. It is not necessarily the same as the class version number (see the @version tag in 5.1).

date is the date of the most recent modification. “firstname lastname” is an optional string

identifying the creator of the file.

The copyright notice should contain at least the following line:

 Copyright (c) yearlist CopyrightHolder . All Rights Reserved.

yearlist is a year, a year range, or a comma-separated list of years for which the copyright

applies. The SCCS keyword string %G%can be used in place of specifying the yearlist
explicitly. SCCS will fill in the year automatically upon check out, thereby eliminating the need to

update the year list every year. Additional legal text may need to be included depending on the

situation. Consult your legal department for exact text. Here is the minimal copyright/id block

comment for software developed at Sun:

/*
 * %W% %E%
 *
 * Copyright (c) %G% Sun Microsystems, Inc. All Rights Reserved.
 */

2.2.2 package declaration

Every source file should contain a package declaration. Omitting the package declaration causes

the types to be part of an unnamed package, with implementation-defined semantics. The

package statement should start in column 1, and a single space should separate the keyword

package from the package name. See section 3.1 for rules on package naming.

Example:

package java.lang;

2.2.3 import declarations

Import statements should start in column 1, and a single space should separate the keyword

import from the type name. Import statements should be grouped together by package name.

A single blank line may be used to separate groups of import statements. Within groups, import

statements should be sorted lexically
1

.

1. A tip for vi users: this can be accomplished easily by positioning the cursor on column 1 of the first import statement and
typing: !}sort <RETURN>
4 A Coding Style Guide for Java WorkShop and Java Studio Programming

Wildcard type-import-on-demand declarations (e.g. import java.util.*;) should not be used;

use fully qualified type names instead. There are several reasons for this:

■ The most important reason is that someone can later add a new unexpected class file to the

same package that you are importing. This new class can conflict with a type you are using

from another package, thereby turning a previously correct program into an incorrect one

without touching the program itself.

■ Explicit class imports clearly convey to a reader the exact classes that are being used

(and which classes are not being used).

■ Explicit class imports provide better compile performance. While type-import-on-demand

declarations are convenient for the programmer and save a little bit of time initially, this time

is paid for in increased compile time every time the file is compiled.

The -verbose flag in the javac compiler can be used to discover which types are actually

being imported in order to convert type-import-on-demand declarations to fully qualified ones.

2.2.4 class/interface declarations

Following the import sections are one or more class declarations and/or interface declarations,

collectively referred to simply as type declarations. The number of type declarations per file

should be kept small. There should be at most one public type declaration per file. The public

type, if any, should be the first type declaration in the file.

Every public type declaration should be immediately preceded by a documentation comment

describing its function and parameters (using the @paramtag). The description should be concise.

Non-public type declarations should also be preceded by a comment, but it need not be a

documentation comment. See section 5.1 for more information about documentation comments.
5

3.0 Naming Conventions

The naming conventions specified in this document apply only to Java code written in the basic

ASCII character set. Terms such as “upper case” are obviously meaningless for some Unicode

character sets.

3.1 Package Naming

Generally, package names should use only lower-case letters and digits and no underscores.

Examples:

java.lang
java.awt.image
dinosaur.theropod.velociraptor

An exception to this rule is when using the unique package prefix scheme, suggested in [3], for

packages that will be widely distributed. In this scheme, a unique prefix is constructed by using

the components of the Internet domain name of the host site in reverse order. The first component

(top-level Internet domain) is all upper-case, and the remaining components of the prefix are in

lower case.

Example:

com.acmedonuts.graphics

3.2 Class/Interface Naming

All type names (classes and interfaces) should use the InfixCaps style. Start with an upper-case
letter, and capitalize the first letter of any subsequent word in the name, as well as any letters that

are part of an acronym. All other characters in the name are lower case. Do not use underscores to

separate words. Class names should be nouns or noun phrases. Interface names depend on the

salient purpose of the interface. If the purpose is primarily to endow an object with a particular

capability, then the name should be an adjective (ending in -able or -ible if possible) that

describes the capability (e.g. Searchable , Sortable , NetworkAccessible) . Otherwise

use nouns or noun phrases.
6 A Coding Style Guide for Java WorkShop and Java Studio Programming

Examples:

// GOOD type names:
LayoutManager, AWTException, ArrayIndexOutOfBoundsException

// BAD type names:
ManageLayout // verb phrase
awtException // first letter lower-case
array_index_out_of_bounds_exception // underscores

3.3 Field Naming

Names of non-constant fields (reference types or non-final primitive types) should use the

infixCaps style. Start with a lower-case letter, and capitalize the first letter of any subsequent word

in the name, as well as any letters that are part of an acronym. All other characters in the name

are lower case. Do not use underscores to separate words. The names should be nouns or noun

phrases.

Examples:

boolean resizable;
char recordDelimiter;

Names of fields being used as constants should be all upper case, with underscores separating

words. The following are considered to be constants:

1. All static final primitive types (Remember that all interface fields are inherently

static final).

2. All static final object reference types that are never followed by "." (dot).

3. All static final arrays that are never followed by "[" (dot).

Examples:

MIN_VALUE, MAX_BUFFER_SIZE, OPTIONS_FILE_NAME

One-character field names should be avoided except for temporary and looping variables. In these

cases, use:

■ b for a byte

■ c for a char

■ d for a double

■ e for an Exception object

■ f for a float

■ g for a Graphics object

■ i , j , k , m, n for integers

■ p, q, r, s for String , StringBuffer, or char[] objects

An exception is where a strong convention for the one-character name exists, such as x and y
for screen coordinates.

Avoid variable l (“el”) because it is hard to distinguish it from 1 (“one”) on some printers

and displays.
7

3.4 Method Naming

Method names
2

should use the infixCaps style. Start with a lower-case letter, and capitalize the first

letter of any subsequent word in the name, as well as any letters that are part of an acronym. All

other characters in the name are lower case. Do not use underscores to separate words. Note that

this is identical to the naming convention for non-constant fields; however it should always be

easy to distinguish the two from context. Method names should be imperative verbs or verb

phrases.

Examples:

// GOOD method names:
showStatus(), drawCircle(), addLayoutComponent()

// BAD method names:
mouseButton() // noun phrase; doesn’t describe function
DrawCircle() // starts with upper-case letter
add_layout_component() // underscores

// The function of this method is unclear. Does it start the
// server running (better: startServer()), or test whether or not
// it is running (better: isServerRunning())?
serverRunning() // verb phrase, but not imperative

A method to get or set some property of the class should be called getProperty () or

setProperty () respectively, where Property is the name of the property.

Examples:

getHeight(), setHeight()

A method to test some boolean property of the class should be called isProperty (),

where Property is the name of the property.

Examples:

isResizable(), isVisible()

3.5 Local Variable Naming

Local variable follow the same naming rules as field names (see section 3.3).

3.6 Statement Label Naming

Statement labels can be targets of break or continue statements. They should be all lower case,

with words separated by underscores. Even though the language allows it, do not use the same

statement label name more than once in the same method. See section 8.3 for the format of a

labeled statement.

2. In the Java language, constructors are not considered methods; constructors of course always have the same name as the
class.
8 A Coding Style Guide for Java WorkShop and Java Studio Programming

Example:

for (int i = 0; i < n; i++) {
 search: {
 for (int j = 0; j < n/2; j++) {
 if (node[j].name == name)
 break search;
 }
 for (int j = n/2; j < n; j++) {
 if (node[j].name == name)
 break search;
 }
 } // search
}

9

4.0 White Space Usage

4.1 Blank Lines

Blank lines can improve readability by grouping sections of the code that are logically related.

A blank line should also be used in the following places:

1. After the copyright block comment, package declaration, and import section.

2. Between class declarations.

3. Between method declarations.

4. Between the last field declaration and the first method declaration in a class (see section

6.1).

5. Before a block or single-line comment, unless it is the first line in a block.

4.2 Blank Spaces

4.2.1 A single blank space (not tab) should be used:

1. Between a keyword and its opening parenthesis. This applies to the following keywords:

catch , for , if , switch , synchronized , while . It does not apply to the keywords

super and this ; these should never be followed by white space.

2. After any keyword that takes an argument. Example: return true;

3. Between two adjacent keywords.

4. Between a keyword or closing parenthesis, and an opening brace “{”.

5. Before and after binary operators
3

except .(dot). Note that instanceof is a binary

operator:

if (obj instanceof Button) { // RIGHT

if (obj instanceof(Button)) { // WRONG

3. Some judgement is called for in the case of complex expressions, which may be clearer if the “inner” operators are not
surrounded by spaces and the “outer” ones are.
10 A Coding Style Guide for Java WorkShop and Java Studio Programming

6. After a comma in a list.

7. After the semi-colons in a for statement, e.g.:

 for (expr1; expr2; expr3) {

4.2.2 Blanks should not be used:

1. Between a method name and its opening parenthesis.

2. Before or after a .(dot) operator.

3. Between a unary operator and its operand.

4. Between a cast and the expression being casted.

5. After an opening parenthesis or before a closing parenthesis.

6. After an opening square bracket [or before a closing square bracket].

Examples:

a += c[i + j] + (int)d + foo(bar(i + j), e);
a = (a + b) / (c * d);
if (((x + y) > (z + w)) || (a != (b + 3))) {
 return foo.distance(x, y);
}

Do not use special characters like form feeds or backspaces.

4.3 Indentation

Line indentation is always 4 spaces
4

, for all indentation levels.

The construction of the indentation may include tabs as well as spaces in order to reduce the file

size; however you may not change the hard tab settings to accomplish this. Hard tabs must be set

every 8 spaces

Note – If this rule was not followed, tabs could not be used because they would lack a well-

defined meaning.

4.4 Continuation Lines

Lines should be limited to 80 columns (but not necessarily 80 bytes for non-ASCII encodings).

Lines longer than 80 columns should be broken into one or more continuation lines, as needed.

All the continuation lines should be aligned and indented from the first line of the statement.

The amount of the indentation depends on the type of statement.

4. This is a difference from the predominant indentation style of 8 spaces used in C programs; it is an acknowledgment that
typical Java programs tend to have more levels of nesting than typical C programs.
11

If the statement must be broken in the middle of a parenthetic expression, such as for compound

statements or for the parameter list in a method invocation or declaration, the next line should be

aligned with the first character to the right of the first unmatched left parenthesis in the previous

line. In all other cases, the continuation lines should be indented by a full standard indentation

(4 spaces). If the next statement after a continuation line is indented by the same amount as the

continuation line, then a single blank line should immediately follow the opening brace to avoid

confusing it with the continuation line. It is acceptable to break a long line sooner than absolutely

necessary, especially if it improves readability.

Examples:

// RIGHT
foo(long_expression1, long_expression2, long_expression3,
 long_expression4);
// RIGHT
foo(long_expression1,
 long_expression2,
 long_expression3,
 long_expression4);
// RIGHT - blank line follows continuation line because same indent
if (long_logical_test_1 || long_logical_test_2 ||
 long_logical_test_3) {

 statements;
}

A continuation line should never start with a binary operator. Never break a line where normally

no white space appears, such as between a method name and its opening parenthesis, or between

an array name and its opening square bracket. Never break a line just before an opening brace “{”.

Examples:

// WRONG
while (long_expression1 || long_expression2 || long_expression3)
{
}

// RIGHT
while (long_expression1 || long_expression2 ||
 long_expression3) {
}

12 A Coding Style Guide for Java WorkShop and Java Studio Programming

5.0 Comments

The Java language supports three kinds of comments: documentation, block, and single-line

comments. Some general guidelines for comment usage include:

■ Comments should help a reader understand the purpose of the code. They should guide the

reader through the flow of the program, focusing especially on areas which might be confusing

or obscure.

■ Avoid comments that are obvious from the code, as in this famously bad comment example:

i = i + 1; // Add one to i

■ Remember that misleading comments are worse than no comments at all.

■ Avoid putting any information into comments that is likely to become out of date.

■ Avoid enclosing comments in boxes drawn with asterisks or other special typography.

■ Temporary comments that are expected to be changed or removed later should be marked

with the special tag “XXX: ” so that they can easily be found afterwards. Ideally, all temporary

comments should have been removed by the time a program is ready to be shipped.

Example:

// XXX: Change this to call sort() when the bugs in it are fixed
list->mySort();

For further extensive guidance in proper comment usage, see references [10] and [12].

5.1 Documentation Comments

The Java language provides support for special comments documenting types (classes and

interfaces), fields (variables), constructors, and methods, hereafter referred to collectively as

declared entities (see section 6.1.2 for guidelines on which declared entities should have

documentation comments). The javadoc program can then be used to automatically extract

these comments and generate formatted HTML pages.

A documentation comment should immediately precede the declared entity, with no blank lines

in between. The first line of the comment should be simply the characters /** with no other text

on the line, and should be aligned with the following declared entity. Subsequent lines consist

of an asterisk, followed by a single space, followed by comment text, and aligned with the first

asterisk of the first line. The first sentence of the comment text is special and should be a self-

contained summary sentence. A sentence is defined as text up to the first period that is followed

by a space, tab, or new-line. Subsequent sentences further describe the declared entity.
13

The comment text can include embedded HTML tags for better formatting, with the exceptions

of the following tags: <H1>, <H2>, <H3>, <H4>, <H5>, <H6>, <HR> .

Following the comment text are the documentation tag lines. A documentation comment should

include all the tags that are appropriate for the declared entity.

Class and interface comments can use the @version , @author , and @seetags, in that order.

If there are multiple authors, use a separate @author tag for each one. Required tags: none.

Constructor comments can use the @param, @exception , and @seetags, in that order.

Required tags: one @paramtag for each parameter and one @exception tag for each exception

thrown.

Method comments can use the @param, @return , @exception , and @see tags, in that order.

Required tags: one @paramtag for each parameter, one @return tag if the return type is not

void , and one @exception tag for each exception thrown.

Variable comments can use only the @seetag. Required tags: none.

All of the above can also use the @deprecated tag to indicate the item might be removed in a

future release, and to discourage its continued use.

A documentation comment ends with the characters */ . It is also acceptable to end the comment

with the characters **/ to aid in visual identification of the documentation comment.

This is an example of a documentation comment for a method.:

/**
 * Checks a object for “coolness”. Performs a comprehensive
 * coolness analysis on the object. An object is cool if it
 * inherited coolness from its parent; however, an object can
 * also establish coolness in its own right.
 *
 * @param obj the object to check for coolness
 * @param name the name of the object
 * @return true if the object is cool; false otherwise.
 * @exception OutOfMemoryError If there is not enough memory to
 * determine coolness.
 * @exception SecurityException If the security manager cannot be
 * created
 * @see isUncool
 * @see isHip
 **/
public boolean isCool(Object obj, String name)
 throws OutOfMemoryError, SecurityException {

5.2 Block Comments

A regular block comment is a traditional “C-style” comment. It starts with the characters /*
and ends with the characters */ .

A block comment is always used for the copyright/ID comment at the beginning of each source

file (see section 2.2.1). It is also used to “comment out” several lines of code. Since block

comments do not nest, their use in other parts of the source code would make it difficult to

comment out code. Hence, the use of block comments other than for the copyright/ID comment
and commenting out code is strongly discouraged.
14 A Coding Style Guide for Java WorkShop and Java Studio Programming

5.3 Single-Line Comments

A single-line comment consists of the characters // followed by comment text. There is always

a single space between the // and the comment text. A single line comment must be at the same

indentation level as the code that follows it. More than one single-line comment can be grouped

together to make a larger comment. A single-line comment or comment group should always be

preceded by a blank line, unless it is the first line in a block. If the comment applies to a group of

several following statements, then the comment or comment group should also be followed by a

blank line. If it applies only to the next statement (which may be a compound statement), then do

not follow it with a blank line.

Example:

// Traverse the linked list, searching for a match
for (Node node = head; node.next != null; node = node.next) {

Single-line comments can also be used as trailing comments. Trailing comments are similar to

single-line comments except they appear on the same line as the code they describe. At least

one space should separate that last non-white space character in the statement, and the trailing

comment. If more than one trailing comment appears in a block of code, they should all be

aligned to the same column.

Example:

if (!isVisible())
 return; // nothing to do

length++; // reserve space for null terminator

Avoid the assembly language style of commenting every line of executable code with a trailing

comment.
15

6.0 Classes

A class declaration looks like the following (elements in square brackets [] are optional):

[ClassModifiers] class ClassName [Inheritances] {
ClassBody

}

ClassModifiers are any combination of the following keywords, in this order:

public abstract final

Inheritances are any combination of the following phrases, in this order:
extends SuperClass

implements Interfaces

SuperClass is the name of a superclass. Interfaces is the name of an interface or a comma-separated

list of interfaces. If more than one interface is given, then they should be sorted in lexical order.

A class declaration always starts in column 1. All of the above elements of the class declaration up

to and including the opening brace “{ ” should appear on a single line (unless it is necessary to

break it up into continuation lines if it exceeds the allowable line length). The ClassBody is

indented by the standard indentation of four spaces. The closing brace “} ” appears on its own

line in column 1. There should not be a semi-colon following the closing brace. If the class

declaration has one or more continuation lines, then a single blank line should immediately

follow the opening brace.

Example:

// Long class declaration that requires 2 continuation lines.
// Notice the opening brace is immediately followed by a blank line.
public abstract class VeryLongNameOfTheClassBeingDefined
 extends VeryLongNameOfTheSuperClassBeingExtended
 implements Interface1, Interface2, Interface3, Interface4 {

 static private String buf[256];
}

16 A Coding Style Guide for Java WorkShop and Java Studio Programming

6.1 Class Body Organization

The body of a class declaration should be organized in the following order
5

:

1. Static variable field declarations

2. Instance variable field declarations

3. Static initializer

4. Static member inner class declarations

5. Static method declarations

6. Instance initializer

7. Instance constructor declarations

8. Instance member inner class declarations

9. Instance method declarations

Field, constructor, and method elements are collectively referred to as “members”.

Within each numbered group above, sort in lexical order.

6.1.1 Member access levels

Note that there are four access levels for class members in Java: public , protected , default, and

private — in order of decreasing accessibility
6

. In general, a member should be given the lowest

access level which is appropriate for the member. For example, a member which is only accessed

by classes in the same package should be set to default access. Also, declaring a lower access level

will often give the compiler increased opportunities for optimization. On the other hand, use of

private makes it difficult to extend the class by sub-classing. If there is reason to believe the

class might be sub-classed in the future, then members that might be needed by sub-classes

should be declared protected instead of private .

6.1.2 Member documentation comments

All public members must be preceded by a documentation comment. Protected and default access

members may have a documentation comment as well at the programmer’s discretion. Private

fields should not have a documentation comment. However, all fields that do not have

documentation comments should have single-line comments describing them if their function

is not obvious from the name.

5. It is tempting to want to group these declarations together by access level; i.e. group all the public members together, then all
the default access member, then all the protected members, etc. However, static/non-static is a more important conceptual
distinction than access level. Also, there are so many different access levels in Java that it becomes too confusing, and does not
work well in practice.

6. The private protected access level is obsolete and should not be used.

Data

Code
17

6.1.3 Class and instance variable field declarations

Class variable field declarations, if any, come first. Class variables are those fields which have

the keyword static in their declarations. Instance variable field declarations, if any, come next.

Instance variables are those which do not have the keyword static in their declarations. A field

declaration looks like the following (elements in square brackets “[] ” are optional):

[FieldModifiers] Type FieldName [= Initializer];

FieldModifiers are any legal combination of the following keywords, in this order:

public protected private static final transient volatile

Always put field declarations on separate line; do not group them together on a single line:

static private int useCount, index; // WRONG

static private int useCount; // RIGHT
static private long index; // RIGHT

A field which is never changed after initialization should be declared final . This not only

serves as useful documentation to the reader, but also allows the compiler to generate more

efficient code. It is also a good idea to align the field names so that they all start in the same

column.

6.1.4 Static initializer

A static initializer, if any, comes next. It is called when the class is first referenced, before any

constructors are called. It is useful for initializing blank static final fields (static final fields not

initialized at point of declaration). There should be at most one static initializer per class. It has

the following form:

static {
statements ;

}

6.1.5 Static member inner class declarations

Static inner (nested) classes which pertain to a class as a whole rather than any particular

instance, if any, come next:

public class Outer {
 static class Inner { // static inner class
 }
}

6.1.6 Static method declarations

Any static method comes next. A static method follows the same rules as instance method.

See section 6.2 for the format of method declarations. Note that main() is a static method.
18 A Coding Style Guide for Java WorkShop and Java Studio Programming

6.1.7 Instance initializer

An instance (non-static) initializer, if any, comes next. If present, it is called from every constructor

after any calls to super-class constructors. It is useful for initializing blank final fields (final fields

not initialized at point of declaration), and for initializing anonymous inner classes since they

cannot declare constructors. There should be at most one instance initializer per class:

// Instance initializer
{

statements ;
}

6.1.8 Constructor declarations

Constructor declarations, if any, come next. All of the elements of the constructor declaration up

to and including the opening brace “{ ” should appear on a single line (unless it is necessary to

break it up into continuation lines if it exceeds the allowable line length).

Example:

 /**
 * Constructs a new empty FooBar.
 */
 public FooBar() {
 value = new char[0];
 }

If there is more than one constructor, sort them lexically by formal parameter list, with

constructors having more parameters always coming after those with fewer parameters.

This implies that a constructor with no arguments (if it exists) is always the first one.

6.1.9 Instance method declarations

Instance method declarations, if any, come next. Instance methods are those which do not have

the keyword static in their declarations. See section 6.2 for the format of method declarations.

6.2 Method Declarations

All of the elements of a method declaration up to and including the opening brace “{ ” should

appear on a single line (unless it is necessary to break it up into continuation lines if it exceeds the

allowable line length). A method declaration looks like the following (elements in square brackets

“{ ” are optional):

[MethodModifiers] Type MethodName (Parameters) [throws Exceptions] {

MethodModifiers are any combination of the following phrases, in this order:

public protected private abstract static final synchronized native

Exceptions is the name of an exception or a comma-separated list of exceptions. If more than

one exception is given, then they should be sorted in lexical order.

Parameters is the list of formal parameter declarations. Parameters may be declared final in

order to make the compiler enforce that the parameter is not changed in the body of the method,

as well as to provide useful documentation to the reader. Parameters must be declared final in

order to make them available to local inner classes.
19

A method that will never be overridden by a sub-class should be declared final . This allows the

compiler to generate more efficient code. Methods that are private , or declared in a class that is

final , are implicitly final ; however in these cases the method should still be explicitly declared

final for clarity.

Methods are sorted in lexical order, with one exception: if there is a finalize() method, it

should be the very last method declaration in the class. This makes it easy to quickly see whether

a class has a finalize() method or not. If possible, a finalize() method should call

super.finalize() as the last action it performs. If the method declaration has one or more

continuation lines, then a single blank line should immediately follow the opening brace.

Examples:

// Long method declaration that requires a continuation line.
// Note the opening brace is immediately followed by a blank line.
public static final synchronized long methodName()
 throws ArithmeticException, InterruptedException {

 static int count;
}

// Line broken in the middle of a parameter list
// Align just after left parenthesis
public boolean imageUpdate(Image img, int infoflags,
 int x, int y, int w, int h) {
 int i;
}

6.3 Local Inner Classes

Inner (nested) classes may be declared local to a method. This makes the inner class unavailable

to any other method in the enclosing class. They follow the same format rules as top-level classes:

Enumeration enumerate() {
 class Enum implements Enumeration {
 }

 return new Enum();
}

6.4 Anonymous Inner Classes
Anonymous classes can be used when then following conditions are met:

1. The class is referred to directly in only one place.

2. The class definition is simple, and contains only a few lines.

In all other cases, use named classes (inner or not) instead.

AWT Listeners are a common case where anonymous classes are appropriate. In many such cases,

the only purpose of the class is simply to call another method to do most of the work of handling

an event.
20 A Coding Style Guide for Java WorkShop and Java Studio Programming

Anonymous inner classes follow similar rules as named classes; however there are a few rules

specific to anonymous classes:

■ When possible, the whole new expression, consisting of the new operator, the type name, and

opening brace, should appear on the same line as the expression of which it is a part. If it does

not fit on the line, then the whole new expression should moved to the next line as a unit.

■ The body of the anonymous class should be indented by the normal indentation from the

beginning of the line that contains the new expression.

■ The closing brace should not be on a line by itself, but should be followed by whatever tokens

are required by the rest of the expression. Usually, this means the closing brace is followed by

at least a semi-colon, closing parenthesis, or comma. The closing brace is indented to the same

level as the line containing the new expression. There is no space immediately following the

closing brace.

Examples:

// Anonymous class inside a return expression
Enumeration myEnumerate(final Object array[]) {
 return new Enumeration() { // new on same line
 int count = 0;
 public boolean hasMoreElements() {
 return count < array.length;
 }
 public Object nextElement() {
 return array[count++];
 }
 }; // } followed by ;
}

// Anonymous class inside a parenthesized expression
helpButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 showHelp();
 }
}); // } followed by);

6.5 Anonymous Array Expressions and Array Initializers

Anonymous arrays can be used wherever an array value is needed. If the entire anonymous array

expression fits on one line, then it is acceptable to place it on a single line. Otherwise, there should

be one initializer per line, with the same rules as for anonymous inner classes (see section 6.4).

The same rules also apply to array initializers in array declarations.
21

// Example where entire array expression fits on one line
Polygon p = new Polygon(new int[] {0, 1, 2},
 new int[] {10, 11, 12},
 3);

// Example with one array initializer per line
String errorMessages[] = {
 "No such file or directory",
 "Unable to open file",
 "Unmatched parentheses in expression"
};

// Example of embedded anonymous array expression
createMenuItems(new menuItemLabels[] {
 "Open",
 "Save",
 "Save As...",
 "Quit",
});
22 A Coding Style Guide for Java WorkShop and Java Studio Programming

7.0 Interfaces

Interfaces follow a similar style to classes. An interface declaration looks like the following

(elements in square brackets “[] ” are optional):

[public] interface InterfaceName [extends SuperInterfaces] {
InterfaceBody

}

SuperInterfaces is the name of an interface or a comma-separated list of interfaces. If more than

one interface is given, then they should be sorted in lexical order.

An interface declaration always starts in column 1. All of the above elements of the interface

declaration up to and include the opening brace “{ ” should appear on a single line (unless it

is necessary to break it up into continuation lines if it exceeds the allowable line length). The

InterfaceBody is indented by the standard indentation of four spaces. The closing brace “} ”

appears on its own line in column 1.There should not be a semi-colon following the closing brace.

All interfaces are inherently abstract ; do not explicitly include this keyword in the declaration

of an interface.

All interface fields are inherently public , static , and final ; do not explicitly include these

keywords in the declaration of an interface field.

All interface methods are inherently public and abstract ; do not explicitly include these

keywords in the declaration of an interface method.

Except as otherwise noted, interface declarations follow the same style guidelines as classes

(section 6.0).

7.1 Interface Body Organization

The body of an interface declaration should be organized in the following order:

1. Interface constant field declarations.

2. Interface method declarations

The declaration styles of interface fields and methods are identical to the styles for class fields

and methods.
23

8.0 Statements

8.1 Simple Statements

8.1.1 Assignment and expression statements

Each line should contain at most one statement. For example,

a = b + c; count++; // WRONG

a = b + c; // RIGHT
count++; // RIGHT

8.1.2 Local variable declarations

Generally, local variable declarations should be on separate lines; however an exception

is allowable for temporary variables that do not require initializers. For example,

int i, j = 4, k; // WRONG

int i, k; // acceptable
int j = 4; // RIGHT

Local variables may be declared final in order to make the compiler enforce that the variable is

not changed after initialization, as well as to provide useful documentation to the reader. Local

variables must be declared final in order to make them available to local inner classes.

8.1.3 Array declarations

The brackets “[] ” in array declarations should immediately follow the array name, not the type.

The exception is for method return values, where there is no separate name; in this case the

brackets immediately follow the type:

char[] buf; // WRONG
char buf[]; // RIGHT
String[] getNames() { // RIGHT, method return value

There should never be a space before the opening bracket “[”.
24 A Coding Style Guide for Java WorkShop and Java Studio Programming

8.1.4 return statement

Do not use parentheses around the value to be returned unless it is a complex expression:
return(true); // WRONG

return true; // RIGHT
return (s.length() + s.offset); // RIGHT

8.2 Compound Statements

8.2.1 Braces style

Compound statements are statements that contain a statement block enclosed in “{} ” braces. All
compound statements follow the same braces style; namely, the style commonly known as the “K

& R” braces style. This includes interface, class, and method declarations. This style is specified

as follows:

1. The opening left brace is at the end of the line beginning the compound statement.

2. The closing right brace is alone on a line, indented to the same column as the beginning

of the compound statement.

3. The statements inside the enclosed braces are indented one more level than the compound

statement.

8.2.2 Allowed exception to braces rule

In cases where the language allows it, the braces may be omitted when both of the following

are true:

1. The statement block consists of the null statement “; ”, or a single simple (not compound)

statement.

2. There are no continuation lines.

However, it is preferred to use braces in all cases.

The rules on how to format particular compound statements are described below.
25

8.2.3 if statement

if (condition) {
statements ;

}

if (condition) {
statements ;

} else {
statements ;

}

if (condition) {
statements ;

} else if (condition) {
statements ;

} else {
statements ;

}

8.2.4 for statement

for (initialization ; condition ; update) {
statements ;

}

8.2.5 while statement

while (condition) {
statements ;

}

For “infinite” loops, use the following rather than “for (;;) { ... } ” :

while (true) {
statements ;

}

8.2.6 do-while statement

do {
statements ;

} while (condition);

8.2.7 switch statement

switch (condition) {
case 1:
case 2:

statements ;
 break;

case 3:
statements ;

 break;

default:
statements ;

 break;
}

26 A Coding Style Guide for Java WorkShop and Java Studio Programming

8.2.8 try statement

try {
statements ;

} catch (exception-declaration) {
statements ;

}

try {
statements ;

} finally {
statements ;

}

try {
statements ;

} catch (exception-declaration) {
statements ;

} finally {
 statements;
}

8.2.9 synchronized statement

synchronized (expression) {
 statements;
}

8.3 Labeled Statements

Labeled statements should always be enclosed in braces “{} ”. The label itself should be indented

to the normal indentation level, followed by a colon, single space, and opening brace. The closing

brace should have a trailing comment on the same line with the label repeated:

statement-label : {
} // statement-label
27

References

[1] Reddy, A., C++ Style Guide, Sun Internal Paper

[2] Plocher, J., Byrne, S., Vinoski, S., C++ Programming Style With Rationale, Sun Internal Paper

[3] Gosling, J., Joy, B., Steele, G., The Java Language Specification, Addison-Wesley, 1996

[4] Skinner, G., Shah, S., Shannon, B., C Style and Coding Standards, Sun Internal Paper, Token 2151,

Sun Electronic Library, 1990

[5] JavaBeans 1.0 Specification, JavaSoft, October 1996

[6] Pike, R., Notes on Programming in C, Bell Labs Technical Paper

[7] Cannon, L., Spencer, H., Keppel, D., et al, Recommend C Style and Coding Standards, updated

version of Indian Hill C Style and Coding Standards, AT&T Internal Technical Paper

[8] Goldsmith, D., Palevich, J., Unofficial C++ Style Guide”, develop, April 1990

[9] Inner Classes Specification, JavaSoft, 1997

[10] Baecker, R., Marcus, A., Human Factors and Typography for More Readable Programs, ACM Press,

1990, especially Appendix C: An Essay on Comments

[11] Kernighan, B., Ritchie, D., The C Programming Language, Prentice-Hall, 1978

[12] McConnell, Steven, Code Complete, Microsoft Press, 1993, Chapter 19: Self-Documenting Code

[13] Flanagan, David, JAVA in a Nutshell, O’Reilly & Associates, 1997, Chapter 5 – Inner Classes and
Other New Language Features
28 A Coding Style Guide for Java WorkShop and Java Studio Programming

Appendix A: Java Coding Style Example

/*
 * @(#)CodingStyleExample.java 1.0 98/01/23 Achut Reddy
 *
 * Copyright (c) 1994-1998 Sun Microsystems, Inc. All Rights Reserved.
 */

package com.sun.examples;

import java.applet.Applet;
import java.awt.Point;

/**
 * A class to demonstrate good coding style.
 */
public class CodingStyleExample extends Applet implements Runnable {

 static final int BUFFER_SIZE = 4096; // default buffer size
 StringBuffer name; // my name
 Point starshipCoordinates[]; // ship locations

 /**
 * Compute the total distance between a set of Points.
 * @param starshipCoordinates the locations of all known starships
 * @param numberOfPoints the number of points in the array
 * @return the total distance
 */
 public int computeDistances(Point starshipCoordinates[],
 int numberOfPoints) throws Exception {
 int distance = 0; // accumulates distances

 // Compute distance to each starship and add it to the total
 for (int i = 0; i < numberOfPoints; i++) {
 distance += Math.sqrt((double)((starshipCoordinates[i].x *
 starshipCoordinates[i].x) +
 (starshipCoordinates[i].y *
 starshipCoordinates[i].y)));
 }

 if (distance > 100000) {
 throw new Exception();
 }

 return distance;
 }

 /**
 * Called whenever Thread.start() is called for this class
 */
 public void run() {
 try {
 name.append("X");
 System.out.println(name);
 } catch (Exception e) {
 name = new StringBuffer(BUFFER_SIZE);
 }
 }
}

29

Java Coding Style Quick Reference Sheet

Line length 80 characters

Indentation Four spaces, for all indentation levels

Braces style “K&R” braces style: class declarations, method declarations, block statements,

array initializers

Blank lines Before: a block or single-line comment, unless it is the first line in a block

Between: class or method declarations; last variable declaration and first method

declaration

After: copyright/ID comment, package declaration, import section

Blank spaces Before: binary operators except . (dot)

Between: a keyword and “(” or “{”; two adjacent keywords;

After: binary operators except . (dot); any keyword that takes an argument

File layout Copyright/ID comment

Package declaration

Import statements

Public class definition

other class definitions

Class layout Static variables, Instance variables,

Static initializer, Static inner class members, Static methods,

Instance initializer, Instance constructors, Instance inner classes, Instance methods

Order of class modifiers public abstract final

Order of inheritances extends implements

Order of method modifiers public protected private abstract static final synchronized
native

TABLE 1 Naming Conventions

GOOD Examples BAD Examples

Source Files *.java MessageFormat.java MessageFormat.jv

JAR Files *.jar, *.zip, all lower-case classes.zip, icons.jar Icons.JAR

Packages lower-case, digits, no “_” com.sun.sunsoft.util COM.Sun.SunSoft.Util

Classes InfixCaps

nouns

LayoutManager layout_manager,

ManageLayout

Interfaces InfixCaps

adjectives(“-able”), nouns

Searchable,

Transferable

Searching,

Data_Transfer

Variable Fields infixCaps, nouns

(booleans: adjectives)

recordDelimiter,

resizable

RecordDelimiter,

record_delimiter

Static Final Fields ALL_CAPS MAX_BUFFER_SIZE,

COMMA

max_buffer_size

Methods infixCaps, imperative verbs,

getProp(), setProp(), isProp()

showStatus(),

isResizable()

add_component()

Statement Labels lower_case name_loop Nameloop
30 A Coding Style Guide for Java WorkShop and Java Studio Programming

Sun Microsystems, Inc.

901 San Antonio Road

Palo Alto, CA 94303

1 (800) 786.7638

+1.512.434.1511

http://www.sun.com/software/

May 1998

	A Coding Style Guide for Java™ WorkShop™ and Java™ Studio™ Programming
	Author: Achut Reddy
	Authoring and Development Tools
	Sun Microsystems, Inc.
	20 May 1998

	Contents
	1.0 Introduction 1
	1.1 Background 2
	1.2 Acknowledgments 2

	2.0 Source Files 3
	2.1 Source-File Naming 3
	2.2 Source-File Organization 3
	2.2.1 Copyright/ID block comment 4
	2.2.2 package declaration 4
	2.2.3 import declarations 4
	2.2.4 class/interface declarations 5

	3.0 Naming Conventions 6
	3.1 Package Naming 6
	3.2 Class/Interface Naming 6
	3.3 Field Naming 7
	3.4 Method Naming 8
	3.5 Local Variable Naming 8
	3.6 Statement Label Naming 8

	4.0 White Space Usage 10
	4.1 Blank Lines 10
	4.2 Blank Spaces 10
	4.2.1 A single blank space (not tab) should be used: 10
	4.2.2 Blanks should not be used: 11

	4.3 Indentation 11
	4.4 Continuation Lines 12

	5.0 Comments 13
	5.1 Documentation Comments 13
	5.2 Block Comments 14
	5.3 Single-Line Comments 15

	6.0 Classes 16
	6.1 Class Body Organization 17
	6.1.1 Member access levels 17
	6.1.2 Member documentation comments 17
	6.1.3 Class and instance variable field declarations 18
	6.1.4 Static initializer 18
	6.1.5 Static member inner class declarations 18
	6.1.6 Static method declarations 18
	6.1.7 Instance initializer 19
	6.1.8 Constructor declarations 19
	6.1.9 Instance method declarations 19

	6.2 Method Declarations 19
	6.3 Local Inner Classes 20
	6.4 Anonymous Inner Classes 20
	6.5 Anonymous Array Expressions and Array Initializers 21

	7.0 Interfaces 23
	7.1 Interface Body Organization 23

	8.0 Statements 24
	8.1 Simple Statements 24
	8.1.1 Assignment and expression statements 24
	8.1.2 Local variable declarations 24
	8.1.3 Array declarations 24
	8.1.4 return statement 25

	8.2 Compound Statements 25
	8.2.1 Braces style 25
	8.2.2 Allowed exception to braces rule 25
	8.2.3 if statement 26
	8.2.4 for statement 26
	8.2.5 while statement 26
	8.2.6 do-while statement 26
	8.2.7 switch statement 26
	8.2.8 try statement 27
	8.2.9 synchronized statement 27

	8.3 Labeled Statements 27

	1.0 Introduction
	1.1 Background
	1.2 Acknowledgments

	2.0 Source Files
	2.1 Source-File Naming
	2.2 Source-File Organization
	1. Copyright/ID block comment
	2. package declaration
	3. import declarations
	4. One or more class/interface declarations
	2.2.1 Copyright/ID block comment
	/*
	* %W% %E%
	*
	* Copyright (c) %G% Sun Microsystems, Inc. All Rights Reserved.
	*/

	2.2.2 package declaration
	2.2.3 import declarations
	2.2.4 class/interface declarations

	3.0 Naming Conventions
	3.1 Package Naming
	java.lang
	java.awt.image

	3.2 Class/Interface Naming
	// GOOD type names:
	LayoutManager, AWTException, ArrayIndexOutOfBoundsException
	// BAD type names:
	ManageLayout // verb phrase
	awtException // first letter lower-case array_index_out_of_bounds_exception // underscores

	3.3 Field Naming
	boolean resizable;
	char recordDelimiter;
	1. All static final primitive types (Remember that all interface fields are inherently static fin...
	2. All static final object reference types that are never followed by "." (dot).
	3. All static final arrays that are never followed by "[" (dot).

	3.4 Method Naming
	mouseButton() // noun phrase; doesn’t describe function
	DrawCircle() // starts with upper-case letter
	add_layout_component() // underscores
	// The function of this method is unclear. Does it start the
	// server running (better: startServer()), or test whether or not
	// it is running (better: isServerRunning())?
	serverRunning() // verb phrase, but not imperative

	3.5 Local Variable Naming
	3.6 Statement Label Naming
	for (int i = 0; i < n; i++) {
	search: {
	for (int j = 0; j < n/2; j++) {
	if (node[j].name == name)
	break search;
	}
	for (int j = n/2; j < n; j++) {
	if (node[j].name == name)
	break search;
	}
	} // search
	}

	4.0 White Space Usage
	4.1 Blank Lines
	1. After the copyright block comment, package declaration, and import section.
	2. Between class declarations.
	3. Between method declarations.
	4. Between the last field declaration and the first method declaration in a class (see section 6.1).
	5. Before a block or single-line comment, unless it is the first line in a block.

	4.2 Blank Spaces
	4.2.1 A single blank space (not tab) should be used:
	1. Between a keyword and its opening parenthesis. This applies to the following keywords: catch, ...
	2. After any keyword that takes an argument. Example: return true;
	3. Between two adjacent keywords.
	4. Between a keyword or closing parenthesis, and an opening brace “{”.
	5. Before and after binary operators except .(dot). Note that instanceof is a binary operator:
	if (obj instanceof Button) { // RIGHT
	if (obj instanceof(Button)) { // WRONG
	6. After a comma in a list.
	7. After the semi-colons in a for statement, e.g.:

	4.2.2 Blanks should not be used:
	1. Between a method name and its opening parenthesis.
	2. Before or after a .(dot) operator.
	3. Between a unary operator and its operand.
	4. Between a cast and the expression being casted.
	5. After an opening parenthesis or before a closing parenthesis.
	6. After an opening square bracket [or before a closing square bracket].
	a += c[i + j] + (int)d + foo(bar(i + j), e);
	a = (a + b) / (c * d);
	if (((x + y) > (z + w)) || (a != (b + 3))) {
	return foo.distance(x, y);

	4.3 Indentation
	4.4 Continuation Lines
	// RIGHT
	foo(long_expression1, long_expression2, long_expression3,
	// RIGHT
	foo(long_expression1,
	long_expression2,
	long_expression3,
	// RIGHT - blank line follows continuation line because same indent
	if (long_logical_test_1 || long_logical_test_2 ||
	long_logical_test_3) {
	statements;
	}
	// WRONG
	while (long_expression1 || long_expression2 || long_expression3)
	{
	}
	// RIGHT
	while (long_expression1 || long_expression2 ||
	long_expression3) {
	}

	5.0 Comments
	i = i + 1; // Add one to i
	// XXX: Change this to call sort() when the bugs in it are fixed
	list->mySort();
	5.1 Documentation Comments
	/**
	* Checks a object for “coolness”. Performs a comprehensive
	* coolness analysis on the object. An object is cool if it
	* inherited coolness from its parent; however, an object can
	* also establish coolness in its own right.
	*
	* @param obj the object to check for coolness
	* @param name the name of the object
	* @return true if the object is cool; false otherwise.
	* @exception OutOfMemoryError If there is not enough memory to
	* determine coolness.
	* @exception SecurityException If the security manager cannot be
	* created
	* @see isUncool
	* @see isHip
	**/
	public boolean isCool(Object obj, String name)
	throws OutOfMemoryError, SecurityException {

	5.2 Block Comments
	5.3 Single-Line Comments
	// Traverse the linked list, searching for a match
	if (!isVisible())
	return; // nothing to do
	length++; // reserve space for null terminator

	6.0 Classes
	[ClassModifiers] class ClassName [Inheritances] {
	ClassBody
	}
	// Long class declaration that requires 2 continuation lines.
	// Notice the opening brace is immediately followed by a blank line.
	public abstract class VeryLongNameOfTheClassBeingDefined
	extends VeryLongNameOfTheSuperClassBeingExtended
	implements Interface1, Interface2, Interface3, Interface4 {
	static private String buf[256];
	6.1 Class Body Organization
	1. Static variable field declarations
	2. Instance variable field declarations
	3. Static initializer
	4. Static member inner class declarations
	5. Static method declarations
	6. Instance initializer
	7. Instance constructor declarations
	8. Instance member inner class declarations
	9. Instance method declarations
	6.1.1 Member access levels
	6.1.2 Member documentation comments
	6.1.3 Class and instance variable field declarations
	static private int useCount; // RIGHT

	6.1.4 Static initializer
	static {
	statements;
	}

	6.1.5 Static member inner class declarations
	public class Outer {
	static class Inner { // static inner class
	}
	}

	6.1.6 Static method declarations
	6.1.7 Instance initializer
	// Instance initializer
	{
	statements;
	}

	6.1.8 Constructor declarations
	/**
	* Constructs a new empty FooBar.
	*/
	public FooBar() {
	value = new char[0];

	6.1.9 Instance method declarations

	6.2 Method Declarations
	// Long method declaration that requires a continuation line.
	// Note the opening brace is immediately followed by a blank line.
	public static final synchronized long methodName()
	throws ArithmeticException, InterruptedException {
	static int count;
	}
	// Line broken in the middle of a parameter list
	// Align just after left parenthesis
	public boolean imageUpdate(Image img, int infoflags,
	int x, int y, int w, int h) {
	int i;
	}

	6.3 Local Inner Classes
	Enumeration enumerate() {
	class Enum implements Enumeration {
	}
	return new Enum();
	}

	6.4 Anonymous Inner Classes
	1. The class is referred to directly in only one place.
	2. The class definition is simple, and contains only a few lines.
	// Anonymous class inside a return expression
	Enumeration myEnumerate(final Object array[]) {
	return new Enumeration() { // new on same line
	int count = 0;
	public boolean hasMoreElements() {
	return count < array.length;
	}
	public Object nextElement() {
	return array[count++];
	}
	}; // } followed by ;
	}
	// Anonymous class inside a parenthesized expression
	helpButton.addActionListener(new ActionListener() {
	public void actionPerformed(ActionEvent e) {
	showHelp();
	}
	}); // } followed by);

	6.5 Anonymous Array Expressions and Array Initializers
	// Example where entire array expression fits on one line
	Polygon p = new Polygon(new int[] {0, 1, 2},
	new int[] {10, 11, 12},
	3);
	// Example with one array initializer per line
	String errorMessages[] = {
	"No such file or directory",
	"Unable to open file",
	"Unmatched parentheses in expression"
	};
	// Example of embedded anonymous array expression
	createMenuItems(new menuItemLabels[] {
	"Open",
	"Save",
	"Save As...",
	"Quit",

	7.0 Interfaces
	[public] interface InterfaceName [extends SuperInterfaces] {
	InterfaceBody
	}
	7.1 Interface Body Organization
	1. Interface constant field declarations.
	2. Interface method declarations

	8.0 Statements
	8.1 Simple Statements
	8.1.1 Assignment and expression statements
	a = b + c; // RIGHT

	8.1.2 Local variable declarations
	int i, k; // acceptable

	8.1.3 Array declarations
	char[] buf; // WRONG
	char buf[]; // RIGHT

	8.1.4 return statement
	return(true); // WRONG
	return true; // RIGHT
	return (s.length() + s.offset); // RIGHT

	8.2 Compound Statements
	8.2.1 Braces style
	1. The opening left brace is at the end of the line beginning the compound statement.
	2. The closing right brace is alone on a line, indented to the same column as the beginning of�th...
	3. The statements inside the enclosed braces are indented one more level than the compound statem...

	8.2.2 Allowed exception to braces rule
	1. The statement block consists of the null statement “;”, or a single simple (not compound) stat...
	2. There are no continuation lines.

	8.2.3 if statement
	if (condition) {
	statements;
	}
	if (condition) {
	statements;
	} else {
	statements;
	}
	if (condition) {
	statements;
	} else if (condition) {
	statements;
	} else {
	statements;
	}

	8.2.4 for statement
	for (initialization; condition; update) {
	statements;
	}

	8.2.5 while statement
	while (condition) {
	statements;
	while (true) {
	statements;

	8.2.6 do-while statement
	do {
	statements;

	8.2.7 switch statement
	switch (condition) {
	case 1:
	case 2:
	statements;
	break;
	case 3:
	statements;
	break;
	default:
	statements;
	break;

	8.2.8 try statement
	try {
	statements;
	} catch (exception-declaration) {
	statements;
	}
	try {
	statements;
	} finally {
	statements;
	}
	try {
	statements;
	} catch (exception-declaration) {
	statements;
	} finally {
	statements;
	}

	8.2.9 synchronized statement
	synchronized (expression) {
	statements;
	}

	8.3 Labeled Statements
	statement-label: {
	} // statement-label

	References
	[1] Reddy, A., C++ Style Guide, Sun Internal Paper
	[2] Plocher, J., Byrne, S., Vinoski, S., C++ Programming Style With Rationale, Sun Internal Paper
	[3] Gosling, J., Joy, B., Steele, G., The Java Language Specification, Addison-Wesley, 1996
	[4] Skinner, G., Shah, S., Shannon, B., C Style and Coding Standards, Sun Internal Paper, Token 2...
	[5] JavaBeans 1.0 Specification, JavaSoft, October 1996
	[6] Pike, R., Notes on Programming in C, Bell Labs Technical Paper
	[7] Cannon, L., Spencer, H., Keppel, D., et al, Recommend C Style and Coding Standards, updated v...
	[8] Goldsmith, D., Palevich, J., Unofficial C++ Style Guide”, develop, April 1990
	[9] Inner Classes Specification, JavaSoft, 1997
	[10] Baecker, R., Marcus, A., Human Factors and Typography for More Readable Programs, ACM Press,...
	[11] Kernighan, B., Ritchie, D., The C Programming Language, Prentice-Hall, 1978
	[12] McConnell, Steven, Code Complete, Microsoft Press, 1993, Chapter 19: Self-Documenting Code
	[13] Flanagan, David, JAVA in a Nutshell, O’Reilly & Associates, 1997, Chapter 5 – Inner Classes ...

	Appendix A: Java Coding Style Example
	/*
	* @(#)CodingStyleExample.java 1.0 98/01/23 Achut Reddy
	*
	* Copyright (c) 1994-1998 Sun Microsystems, Inc. All Rights Reserved.
	*/
	package com.sun.examples;
	import java.applet.Applet;
	import java.awt.Point;
	/**
	* A class to demonstrate good coding style.
	*/
	public class CodingStyleExample extends Applet implements Runnable {
	static final int BUFFER_SIZE = 4096; // default buffer size
	StringBuffer name; // my name
	Point starshipCoordinates[]; // ship locations
	/**
	* Compute the total distance between a set of Points.
	* @param starshipCoordinates the locations of all known starships
	* @param numberOfPoints the number of points in the array
	* @return the total distance
	*/
	public int computeDistances(Point starshipCoordinates[],
	int numberOfPoints) throws Exception {
	int distance = 0; // accumulates distances
	// Compute distance to each starship and add it to the total
	for (int i = 0; i < numberOfPoints; i++) {
	distance += Math.sqrt((double)((starshipCoordinates[i].x *
	starshipCoordinates[i].x) +
	(starshipCoordinates[i].y *
	starshipCoordinates[i].y)));
	}
	if (distance > 100000) {
	throw new Exception();
	}
	return distance;
	}
	/**
	* Called whenever Thread.start() is called for this class
	*/
	public void run() {
	try {
	name.append("X");
	System.out.println(name);
	} catch (Exception e) {
	name = new StringBuffer(BUFFER_SIZE);
	}
	}
	}

	Java Coding Style Quick Reference Sheet
	TABLE�1 Naming Conventions

