XLISP-PLUS

Reference Manud

Version 3.0






XLISP-PLUS: Another Object-oriented Lisp

Version 3.0

July 4, 2000

Tom Almy
amy@teleport.com

Portions of this manua and software are from XLISP which is Copyright (c) 1988, by David Michadl
Betz, dl rights reserved. Mr. Betz grants permission for unrestricted non-commercial use. Portions of
XLISP-PLUS from XLISP-STAT are Copyright (c) 1988, Luke Tierney. UNIXSTUF.C is from Winterp
1.0, Copyright 1989 Hewlett-Packard Company (by Niels Mayer). Other enhancements and bug fixes are
provided without restriction by Tom Almy, Mikael Pettersson, Ned Holtz, Johnny Greenblatt, Ken
Whedbee, Blake McBride, Leo Sarasla, Pete Yadlowsky, and Richard Zidlicky. See source code for
details.






TABLE OF CONTENTS

INTRODUCTION ...ttt e bbbt eares 1
GETTING STARTED ... oottt e e bbb 2
A QUICK LISP TUTORIAL ... e e 4
XLISP COMMAND LOOP. ...ttt 22
BREAK COMMAND LOORP........cccoiiiiiiiiiiiciiin i 24
DATA TYPES ... e e bbb 25
THE EVALUATOR ... e e e e 28
HOOK FUNCTIONS . ...t 29
LEXICAL CONVENTIONS..... .o 30
8 BIT ASCIlI CHARACTERS........o o e 32
READTABLES. ... e s s s 33
SYMBOL CASE CONTROL ...ttt sanee e 35
PACKAGES ... 37
LAMBDA LISTS ..o e e bbb 38
GENERALIZED VARIABLES ... oo 39
OBUIECT St e e 40

The 'OBJECE CLASS.......ce e 41

THE'Class CLASS....... e s 42
SYMBOLS.... e s 43
EVALUATION FUNCTIONS........oiiiiiieie e 45
MULTIPLE VALUE FUNCTIONS........ooiiiiiiii i a7
SYMBOL FUNCTIONS..... .ot s s 48
GENERALIZED VARIABLE FUNCTIONS ... ..o 51
PACKAGE FUNCTIONS ...t 53
PROPERTY LIST FUNCTIONS........cciiiii i 57
HASH TABLE FUNCTIONS. ... 58
SEQUENCE FUNCTIONS........ceeii e 59
LIST FUNGCTIONS..... .ottt s e e e s b e an e e s sane e 66
DESTRUCTIVE LIST FUNCTIONS.......cciiiiiii i 71
ARRAY FUNCTIONS ... ..o e e s 72
STRING FUNCTIONS. ... e 73
CHARACTER FUNCTIONS ... .ot 76

XLISP-PLUS3.0 TABLE OF CONTENTS Pagei



STRUCTURE FUNCTIONS......cooieii ettt e e e e e s s e e e s annrnee e 78

OBJECT FUNCTIONS.......cttiiiiiie e ettt e e e e s s st eeee e e e e e e s s assttaaeeeeaaesssassssaeeeaaeessaannsssaeereeaesssannnsnnes 80
ARITHMETIC FUNCTIONS ...ttt ettt sttt sttt et e bt enaennes 82
BITWISE LOGICAL FUNCTIONS.......coiiiiiieitiesieeie ettt ettt neeseeetesneesnee e e 87
PREDICATE FUNGCTIONS.......ceeeeiiee oottt e e e et e e e e e e e e sttt e e e e e e e e e esannnneeeeaaaeeeaans 0
CONTROL CONSTRUCTS......ciiiiiieiteeieseesteeie e steatesseesseeseeaseesseessesseesseassessessseensesseessesssesnensses 95
LOOPING CONSTRUCTS......coittitiiieitiesie ettt sttt st besse e b b sie e s be ettt e sbeebesneesbeene e 98
THE PROGRAM FEATURE ..ottt sttt sttt sttt be e te e e sneenteeneennes 9
INPUT/OUTPUT FUNGCTIONS ... itiiee ettt eee e steee e e ssstee e e e snnaeaeessnsaeeeesnneeeeesnnseeeeennnes 101
THE FORMAT FUNGCTION .....eeiiiiieeeiiiiiieieee e e e ettt e e e e e e s s st e e s aeeesssssasaeeeeeeessaannssseneeeaaeeesans 103
FILE I/O FUNCTIONS......coei ettt b et b et nb et st e s be e b snee b 106
STRING STREAM FUNCTIONS. ...ttt sttt sbe et neesseeeesneesseenee e 110
DEBUGGING AND ERROR HANDLING FUNCTIONS ..o 111
SYSTEM FUNGCTIONS. ...ttt s sttt e e e e e e s st e e eee e s s s ssaeaeeeeeaeeeesanssesanneeaeessannsenes 114
ADDITIONAL FUNCTIONS AND UTILITIES ..ottt 120
S 1= o PRSP 120
RS (< o]0 PRSPPI 121
=13V = (10 OSSR 123
DOCUMENL. ... 124
10 = ot TP PPTPTT 125
IMIEIMIOIZE ...ttt e ettt ekt e ekt e e e b bt e e be e e e be e e enne e e enbe e e nne e e nnneas 127
(11 OSSR 128
LIVING WITH PACKAGES ... oottt bttt sttt st be b nne s 129
BEfOre PaCKAGES ... .eeeie ittt e e s e s e e e 129
The Package CONCEPL ..........eiiiiiieiiie ettt eeannee e 129
(€7c 11T gTo [ [ 011107 (oo HR TP 129
Explicitly Accessing Symbolsin Other Packages..........ccvvveeiiviiieciiiee e 130
Creating aNEW PaCKage..........cuiiiiiiiie ittt s st e e s e e e s nnnneeas 130
EXPOrting SYMIOIS........eeeieeeee e 130
IMPOIING SYMIOIS. ... et 132
ShadoWiNG SYMDIOIS........eeeeeiiiee e e et e e e et e e e s e e e e rab e e e e s snreeeeaannneeas 133
USING MAGCROS........eeeitieiie ittt sttt ettt s e bt e be s seesbe e teemeeabeenbeameesaeenteaneesseenseaneenseas 134
BTz S ol o (== TSP U PO U PP 134
Debugging technique: MacrOEXPaNT-L..........coiuiiiiiiieiiie et 134

Pageii TABLE OF CONTENTS XLISP-PLUS3.0



B .ttt e e e e e e e e e e e e e e e e e e e e s a i rreeaaeeeeaane 135
USING FILE /O FUNCTIONS ...ttt sttt sttt be e 138
INPUL TTOM @FTE ...t e e s e e e e e e e s snnaeeeeann 138
OULPUE 1O @FTE ...t e e e e e e enneeen 138
XLISP-PLUS INTERNALS.....ceeeeeieee ettt e ettt e e e e e s st e e e e e e s snnssbaeeeaaeeesssasnssnneenaaeesennnes 140
COMPILATION OPTIONS . ....ceeetiitieitiete ettt sttt b et s sb ettt b e bt e beebenae e 155
INDEX ...ttt ettt sttt s e bt et ae e bt e et es e R e e a b e oAt e eRe e Rt Rt e R e et e eRe e e Re e bt eneeeReebeeneenneenn 157

XLISP-PLUS3.0 TABLE OF CONTENTS Pageiii






INTRODUCTION

XLISP-PLUS is an enhanced version of David Michael Betz's XLISP to have additiona festures of
Common Lisp. XLISP-PLUS is distributed for the IBM-PC family and for UNIX, but can be easily ported
to other platforms. Complete source code is provided (in "C") to allow easy modification and extension.

Since XLISP-PLUS is based on XLISP, most XLISP programs will run on XLISP-PLUS. Since XLISP-
PLUS incorporates many more features of Common Lisp, many small Common Lisp applications will run
on XLISP-PLUS with little modification. See the section starting on page 155 for details of the differences
between XLISP and XLISP-PLUS and the index entries of Compatibility with previous versions.

Many Common Lisp functions are built into XLISP-PLUS. In addition, XLISP defines the objects 'Object’
and 'Class as primitives. 'Object’ is the only class that has no superclass and hence is the root of the class
hierarchy tree. 'Class is the class of which al classes are instances (it is the only object that is an instance
of itsdlf).

This document is a brief description of XLISP-PLUS. It assumes some knowledge of Lisp and some
understanding of the concepts of object-oriented programming.

You will probably aso need a copy of "Common Lisp: The Language” by Guy L. Stede, Jr., published by
Digital Pressto use as a reference for some of the Common Lisp functions that are described only briefly
in this document.

XLISP-PLUS has a number of compilation options to eliminate groups of functions and to tailor itsdf to
various environments. Unless otherwise indicated this manual assumes all options are enabled and the
system dependent code is as complete as that provided for the MS-DOS environment. Assistance for
using or porting XLISP-PLUS can be obtained on the USENET newsgroup comp.lang.lisp.x, or by writing
to Tom Almy a the Internet address amy@teleport.com, website
http://mww.tel eport.com/~amy/xlisp.html. Y ou can also reach Tom by writing to him at 17830 SW Shasta
Trail, Tudatin, OR 97062, USA.

XLISP-PLUS3.0 INTRODUCTION Page 1



GETTING STARTED

The XLISP-PLUS archives are available in Internet
via FTP from: ftp.teleport.com in directory /vendors/almy

viathe XLISP-PLUS Web Page at: http://www.aracnet.com/~toma my/xlisp.html.

The archives are the following:

Archive XL300SRC: Contains al source files. Consult the README.SRC file in that archive for
additiond information.

Archive XL300DOC: Contains ASCII documentation for XLISP-PLUS.

Archive XL300PSD: Contains the present documentation in Postscript format (using the fonts Times
Roman, Helvetica and Couries).

Archive XL300REQ: Contains this file, update file (README.UPD), information about the Microsoft
Windows version (README.WIN), tutoria (LISP-TUT.DOC) and al the Lisp source files REQuired for
operation (see README.LSP).

Archive XL300EXE: Executable program which runs on any generic IBM/PC or Clone. Compiled using
Borland C++ 4.0 (as a C compiler), Ralf Brown's spawn version 3.0 for nice SYSTEM function, and
Fabrice Bellard's |zexe to compact the executable. It's tight for memory, so any of the versions that follow
are preferable instead.

Archive XL 300386: Executable program which requires 80386 or 80486, and at least 1 megabyte of
extended memory. Uses DJ Delorie's port of the GNU C compiler, and his DOS extender, GO32.
Compatible with DPMI, VCPI, and XMS. This archive aso contains EMU387, the emulator for above. To
use, set environment variable "set go32=emu c:/binfemu387" assuming this file is in cAbin directory. YOU
MUST USE THIS EMULATOR FOR XLISP.EXE ON SYSTEMS WITHOUT THE FLOATING
POINT COPROCESSOR (486SX, 386 without 387, and a number of non-Intel 486 variations).

Archive XL3000S2: Executable program for OS2 V2.x or later. Uses GCC and EMX.

Archive XL300WIN: Executable for Microsoft Windows 3.1, using an 80386 or better. Also WIN32S 32
bit executable for Windows 3.1, OS2 WARP, Windows/95, and Windows/NT. See file reeadme.win for
details.

For MSDOS:
Note that old versions (such as 80286, or 80x87 support for real mode) are not supported any more.

The archives have to be decompressed using a standard decompressing program, such as PKUNZIP. In
the following examples, we will assume that al the archives are stored in the subdirectory C:\XLISP.

Y ou should issue the following commands:

C
CD \ XLI SP
PKUNZI P *. ZI P

Page 2 GETTING STARTED XLISP-PLUS3.0



The following will set the OS variable XLPATH, which indicates the subdirectories in which the XLISP
interpreter should search when loading Lisp or system files:

SET XLPATH=. ; C:\ XLI SP\ ;

Adding the above line to the AUTOEXEC.BAT file, will save you typing it every time you want to run
XLISP.

Finally run the interpreter:
XLI SP

When you want to exit the XLISP interpreter and go back to the OS, type the following Lisp command:
(exit)

Other platforms:

Microsoft Windows NT/95 Console: Maybe, since Xlisp 3.0 comes with that executable.
0OS/2 Presentation Manager: Not likely.

AMIGA: Now available (but untested).

IBM Mainframe (370): Now available (but untested).

UNIX: Seems to work on BSD style systems and Suns, at least. Those with ancient compilers may require
some code/include file touchups. It's aso been compiled under Linux.

Macintosh: A Macintosh verson has been generated and is being supported by Brian Kendig
(bskendig@netcom.com). It can be found a the archive sites sumex.standford.edu and
mac.archive.umich.edu. Y ou should read the release notes of this version for Mac specific commands.

Other computers: The code was made as portable as possible. You'll need to write a * STUFF.C file for
your system. Also read XLISP.H closdly. All the 80x86'isms are conditionally included, so these won't get
in the way.

C++: It won't compile, but you should be able to hack on the code a while and get it to go. The ANSI C
conversion carried out should help you, athough function headers have been converted only as necessary
to keep the C compilers happy.

XLISP-PLUS3.0 GETTING STARTED Page 3



A QUICK LISP TUTORIAL

Here is a short tutorial of Common Lisp to get you started. If you are an experienced Lisp programmer,
you can skip to the next section. For a complete reference of the language you will need the book
‘Common Lisp: the language, by G. L. Steels, Jr.

These are the main elements of Lisp:

Symbols

A symbol is just a string of characters. There are restrictions on what you can include in a symbol and
what the first character can be, but as long as you stick to letters, digits, and hyphens, you'll be safe.

(Except that if you use only digits and possibly an initia hyphen, Lisp will think you typed an integer rather
than a symbol.) Some examples of symbols:

a
b

cl

f oo

bar

baaz- quux- garply

Some things you can do with symbols follow. (Things after a">" prompt are what you type to the Lisp
interpreter, while other things are what the Lisp interpreter prints back to you. The ";" is Lisp's comment
character: everything froma";" to the end of lineisignored.)

> (setq a b) ;store a nunber as the value of a synbo

5

> a ;take the val ue of a synbol

5

> (let ((a 6)) a) ;bind the value of a synbol tenporarily to 6

6

> a ;the value returns to 5 once the let is finished
5

> (+ a 6) ;use the value of a synbol as an argument to a
function

11

> b ;try to take the value of a synmbol which has no val ue

error: unbound variable - b
if continued: try evaluating synmbol again

There are two special symbols, t and ril. The value of t is defined aways to be t, and the value of nil is
defined always to be nil. Lisp usest and nil to represent true and false. An example of thisuse isin the if
statement, described more fully later:

> (if t 5 6)
5

> (if nil 5 6)
6

> (if 45 6)
5

Page 4 A QUICK LISP TUTORIAL XLISP-PLUS3.0



The last example is odd but correct: nil means false, and anything else means true. (Unless we have a
reason to do otherwise, we uset to mean true, just for the sake of clarity.)

Symbols like t and nil are cdled sdf-evauating symbols, because they evaluate to themselves. Thereis a
whole class of saf-evauating symbols called keywords; any symbol whose name starts with a colon is a
keyword. (See below for some uses for keywords.) Some examples:

> :this-is-a-keyword

: THI S- 1 S- A- KEYWORD

> :so-is-this

:SO-1S-TH' S

> nme-too

: ME- TOO

Numbers

An integer is a string of digits optionaly preceded by + or -. A real number looks like an integer, except
that it has a decima point and optionally can be written in scientific notation. A rational looks like two
integers with a/ between them. Lisp supports complex numbers, which are written #c(r i) (wherer is the
real part and i isthe imaginary part). A number is any of the above. Here are some numbers.

5

17

-34

+6

3. 1415

1.722e-15
#c(1.722e-15 0. 75)

The standard arithmetic functions are all available: +, -, *, /, floor, celling, mod, sin, cos, tan, sgrt, exp, expt,
and so forth. All of them accept any kind of number as an argument. +, -, *, and / return a number
according to type contagion: an integer plus arational isarational, arationa plusared isared, and area
plus a complex is a complex. Here are some examples:

> (+ 3 3/4) ;type contagion

15/ 4

> (exp 1) ;e

2.71828

> (exp 3) ;erere

20. 0855

> (expt 3 4.2) ;exponent with a base other than e
100. 904

>(+567(* 89 10)) ;the fns +*/ all accept nultiple argunents

There is no limit to the absolute value of an integer except the memory size of your computer. Be warned
that computations with bignums (as large integers are caled) can be dow. (So can computations with
rationals, especialy compared to the corresponding computations with small integers or floats.)

Cconses

A consisjust atwo-field record. The fields are called "car" and "cdr”, for historica reasons. (On the first
machine where Lisp was implemented, there were two instructions CAR and CDR which stood for

XLISP-PLUS3.0 A QUICK LISP TUTORIAL Page 5



"contents of address register" and "contents of decrement register”. Conses were implemented using these
two registers.)

Conses are easy to use:

> (cons 4 5) ; Al locate a cons. Set the car to 4 and the cdr to 5.
(4 . 5)

> (cons (cons 4 5) 6)

((4 . 5) . 6)

> (car (cons 4 5))

4

> (cdr (cons 4 5))

5

Lists

You can build many structures out of conses. Perhaps the smplest is a linked list: the car of each cons
points to one of the elements of the list, and the cdr points either to another cons or to nil. You can create
such alinked list with the list function:

> (list 4 5 6)
(4 5 6)

Notice that Lisp prints linked lists in a specia way: it omits some of the periods and parentheses. The rule
is. if the cdr of a consis nil, Lisp doesn't bother to print the period or the nil; and if the cdr of cons A is
cons B, then Lisp doesn't bother to print the period for cons A or the parentheses for cons B. So:

> (cons 4 nil)

(4)

> (cons 4 (cons 5 6))

(4 5. 6)

> (cons 4 (cons 5 (cons 6 nil)))
(4 5 6)

The last example is exactly equivaent to the call (list 4 5 6). Note that nil how means the list with no
elements: the cdr of (ab), alist with 2 dlements, is (b), alist with 1 element; and the cdr of (b), alist with 1
element, is nil, which therefore must be alist with no elements.

The car and cdr of nil are defined to be nil.

Page 6 A QUICK LISP TUTORIAL XLISP-PLUS3.0



If you store your list in avariable, you can make it act like a stack:

> (setq a nil)
NI L

> (push 4 a)
(4)

> (push 5 a)
(5 4)

> (pop a)

5

> a

(4)

> (pop a)

4

> (pop a)
NI L

> a

NI L

Functions
Y ou saw some examples of functions above. Here are some more:

> (+ 3 45 6) ;this function takes any nunber of argunents
18
> (+ (+34) (+(+ 45) 6)) ;isn't prefix notation fun?
22
> (defun foo (x y) (+ x y 5)) ;defining a function
FOO
> (foo 5 0) ;calling a function
10
> (defun fact (x) ;a recursive function
(if (> x 0)
(* x (fact (- x 1)))
1
) )
FACT
> (fact 5)
120
> (defun a (x) (if (=x 0) t (b (- x)))) ;mutual ly recursive functions
A
> (defun b (x) (if (> x 0) (a (- x 1)) (a (+x 1))))
B
> (a 5)
T
> (defun bar (x) ;a function with multiple statenents in
(setg x (* x 3)) ;its body -- it will return the val ue
(setg x (/ x 2)) ;returned by its final statenent
(+ x 4)
)
BAR
> (bar 6)
13

XLISP-PLUS3.0 A QUICK LISP TUTORIAL Page 7



When we defined foo, we gave it two arguments, x and y. Now when we call foo, we are required to
provide exactly two arguments: the first will become the vaue of x for the duration of the call to foo, and
the second will become the value of y for the duration of the call. In Lisp, most variables are lexicaly
scoped; that is, if foo calls bar and bar triesto reference x, bar will not get foo's value for x.

The process of assigning a symbol a value for the duration of some lexical scopeis caled binding.

You can specify optional arguments for your functions. Any argument after the symbol &optiond is
optiond:

> (defun bar (x &optional y) (if y x 0))
BAR
> (defun baaz (&optional (x 3) (z 10)) (+ x 2))
BAAZ
(bar 5)

>
0
> (bar 5 t)
5
>

(baaz 5)
15
> (baaz 5 6)
11
> (baaz)
13

Itislegd to cdl the function bar with either one or two arguments. If it is called with one argument, x will
be bound to the vaue of that argument and y will be bound to nil; if it is called with two arguments, x and y
will be bound to the vaues of the first and second argument, respectively.

The function baaz has two optional arguments. It specifies a default value for each of them: if the caller
specifies only one argument, z will be bound to 10 instead of to nil, and if the caller specifies no arguments,
x will be bound to 3 and z to 10.

You can make your function accept any number of arguments by ending its argument list with an &rest
parameter. Lisp will collect al arguments not otherwise accounted for into a list and bind the &rest
parameter to that list. So:

> (defun foo (x &rest y) y)
FOO

> (foo 3)

NI L

> (foo 4 5 6)

(5 6)

Page 8 A QUICK LISP TUTORIAL XLISP-PLUS3.0



Finally, you can give your function another kind of optional argument called a keyword argument. The
caler can give these arguments in any order, because they're labeled with keywords.

> (defun foo (&key x y) (cons x y))
FOO

> (foo :x 5 :y 3)

(5. 3)

> (foo :y 3 :x 5)

(5. 3)

> (foo :y 3)

(NIL . 3)

> (foo0)

(NIL)

An &key parameter can have a default value too:

> (defun foo (&ey (x 5)) x)
FOO

> (foo :x 7)

7

> (foo0)

5

Printing
Some functions can cause output. The smplest one is print, which prints its argument and then returnsit.
> (print 3)

3
3

The first 3 above was printed, the second was returned.
If you want more complicated output, you will need to use format.

Here's an example:

> (format t "An atom ~S~%and a list: ~S~%nd an integer: ~D~%
nil (list 5) 6)

An atom NI L

and a list: (5)

and an integer: 6

The first argument to format is either t, nil, or a stream. T specifies output to the terminal. Nil means not to
print anything but to return a string containing the output instead. Streams are general places for output to
go: they can specify afile, or the terminal, or another program. This handout will not describe streams in
any further detail.

The second argument is a formatting template, which is a string optionaly containing formatting directives.

All remaining arguments may be referred to by the formatting directives. Lisp will replace the directives
with some appropriate characters based on the arguments to which they refer and then print the resulting
string.

Format aways returns nil unlessits first argument is nil, in which case it prints nothing and returns a string.

XLISP-PLUS3.0 A QUICK LISP TUTORIAL Page 9



There are three different directives in the above example: ~S, ~D, and ~%. The first one accepts any Lisp
object and is replaced by a printed representation of that object (the same representation which is
produced by print). The second one accepts only integers. The third one doesn't refer to an argument; it is
always replaced by a carriage return.

Another useful directiveis ~~, which is replaced by asingle ~.
Refer to page 103 of the manua for many additional formatting directives.

Forms and the Top-L evel Loop

The things which you type to the Lisp interpreter are called forms; the Lisp interpreter repeatedly reads a
form, evaluates it, and prints the result. This procedure is called the read-eval-print loop.

Some forms will cause errors. After an error, Lisp will put you into the debugger so you can try to figure
out what caused the error. Lisp debuggers are dl different; but most will respond to the command "help"
or ":hdp" by giving some form of help. In the XLISP-PLUS package there are provided two debuggers
called step.Isp and stepper.Isp (see pages 120 and 121).

In genera, aform is either an atom (for example, a symbol, an integer, or a string) or alist. If the form is
an atom, Lisp evaluates it immediately. Symbols evduate to their vaue; integers and strings evaluate to
themselves. If the form is a list, Ligp treats its first element as the name of a function; it evaluates the
remaining elements recursively, and then calls the function with the values of the remaining elements as
arguments.

For example, if Lisp sees the form (+ 3 4), it treats + as the name of afunction. It then evaluates 3 to get
3 and 4 to get 4; findly it cdls + with 3 and 4 as the arguments. The + function returns 7, which Lisp
prints.

The top-level loop provides some other conveniences, one particularly convenient @nvenience is the
ability to talk about the results of previoudy typed forms. Lisp always saves its most recent three results; it
stores them as the values of the symbols*, **, and ***. For example:

3
4

5

* k%
* k%

* k%

AV AHAVOAOVEVWYVY OV AV WYV

Special forms

There are a number of speciad forms which look like function cals but aren't. These include control
constructs such as if statements and do loops; assignments like setq, setf, push, and pop; definitions such

Page 10 A QUICK LISP TUTORIAL XLISP-PLUS3.0



as defun and defstruct; and binding constructs such as let. (Not al of these specia forms have been
mentioned yet. See below.)

One useful specia form is the quote form: quote prevents its argument from being evaluated. For example:
> (setq a 3)

a
(quote a)

'a ;'a is an abbreviation for (quote a)

>V >V WV W

Another similar special form is the function form: function causes its argument to be interpreted as a
function rather than being evaluated.

For example:
(setq + 3)

+

>
3
>
3
> '+
+

>

(function +)

#<Subr - +: #88b44d5e>

> # o+ ;# + is an abbreviation for (function +)
#<Subr - +: #88b44d5e>

The function specia form is useful when you want to pass a function as an argument to another function.
See below for some examples of functions which take functions as arguments.

Binding
Binding is lexicaly scoped assignment. It happens to the variables in a function's parameter list whenever
the function is called: the formal parameters are bound to the actual parameters for the duration of the
function call. You can bind variables anywhere in a program with the let special form, which looks like
this:
(let ((varl vall)

(var2 val 2)

)
body

)

XLISP-PLUS3.0 A QUICK LISP TUTORIAL Page 11



Let binds varl to vall, var2 to va2, and so forth; then it executes the statements in its body. The body of a
let follows exactly the same rules that a function body does. Some examples.

(et ((a 3)) (+ al))

\Y

4
> (let ((a 2)
(b 3)
(c 0))

(setg c (+ a b))
c

)

> (setq c 4)

\Y

(let ((c 5)) c)

c

A~V Ol

Instead of (let ((anil) (b nil)) ...), you can write (let (ab) ...).
The vall, va2, etc. insgde a let cannot reference the variables varl, var2, etc... that the let is binding. For
example,
> (let ((x 1)
(y (+x 1)))

y
)

error: unbound variable - x

I the symbol x aready has a global value, stranger happenings will result:
> (setq x 7)

7
> (let ((x 1)
(y (+ x 1)))
y
)
8

The let* specid form isjust like let except that it allows values to reference variables defined earlier in the
let*. For example,

> (setq x 7)

7
> (let* ((x 1)
(y (+x1)))
y
)
2

Page 12 A QUICK LISP TUTORIAL XLISP-PLUS3.0



The form

(let* ((x a)
(y b))

)
is equivalent to

(let ((x &)
(et ((y b))

) )

Dynamic Scoping

The let and let* forms provide lexica scoping, which is what you expect if you're used to programming in
C or Pascal. Dynamic scoping is what you get in BASIC: if you assign a value to a dynamically scoped
variable, every mention of that variable returns that value until you assign another value to the same
variable.

In Lisp, dynamically scoped variables are called specia variables. You can declare a specia variable with
the defvar specia form. Here are some examples of lexicaly and dynamically scoped variables.

In this example, the function check-regular references a regular (ie, lexicaly scoped) variable. Since
check-regular is lexically outside of the let which binds regular, check-regular returns the variable's global
value.

> (setq regular 5)

5

> (defun check-regular () regular)
CHECK- REGULAR

> (check-regul ar)

5

> (let ((regular 6)) (check-regular))
5

In this example, the function check-special references a special (ie, dynamically scoped) variable. Since
the call to check-speciad is temporaly insde of the let which binds special, check-specia returns the
variable's local value.

> (defvar *special * 5)

* SPECI AL*

> (defun check-special () *special*)
CHECK- SPECI AL

> (check-speci al)

5

> (let ((*special* 6)) (check-special))
6

By convention, the name of a specia variable begins and ends with a*. Specia variables are chiefly used
as global variables, since programmers usually expect lexica scoping for loca variables and dynamic
scoping for globa variables.

XLISP-PLUS3.0 A QUICK LISP TUTORIAL Page 13



For more information on the difference between lexical and dynamic scoping, see 'Common Lisp: the
Language'.

Arrays

The function make-array makes a 1D array. The aref function accesses its elements. All elements of an
array areinitialy set to nil. For example:

> (make-array 4) ;1D arrays don't need the extra parens
#(NIL NIL NIL NIL)

Array indices dways start at 0.
See below for how to set the elements of an array.

Strings

A dtring is a sequence of characters between double quotes. Lisp represents a string as a variable-length
array of characters. You can write a string which contains a double quote by preceding the quote with a
backdlash; a double backsash stands for a single backsash. For example:

"abcd" has 4 characters
"\"" has 1 character
"\\" has 1 character

Here are some functions for dealing with strings:

> (concatenate 'string "abcd" "efg")

"abcdef g"

> (char "abc" 1)

#\ b ;Lisp wites characters preceded by #\
> (aref "abc" 1)

#\ b ;remenber, strings are really arrays

The concatenate function can actually work with any type of sequence:

> (concatenate 'string '(#\a #\b) '(#\c))
"abc"

> (concatenate 'list "abc" "de")

(#\a #\b #\c #\d #\e)

> (concatenate "array '#(3 3 3) '#(3 3 3))
#(3 33 3 3 3)

Structures
Lisp structures are analogous to C structs or Pascal records. Here is an example:

> (defstruct foo
bar
baaz
quux

)
FOO

Page 14 A QUICK LISP TUTORIAL XLISP-PLUS3.0



This example defines a data type called foo which is a structure containing 3 fields. It also defines 4
functions which operate on this data type: make-foo, foo-bar, foo-baaz, and foo-quux. The first one makes
a new object of type foo; the others access the fields of an object of type foo. Here is how to use these
functions.

> (nmake-fo00)

#s(FOO BAR NI L BAAZ NIL QUUX NIL)
> (make-foo :baaz 3)

#s(FOO BAR NI L BAAZ 3 QUUX NI L)

> (foo-bar *)

NI L

> (foo-baaz **)

3

The make-foo function can take a keyword argument for each of the fields a structure of type foo can
have. The field access functions each take one argument, a structure of type foo, and return the
gppropriate field.

See below for how to set the fields of a structure.

Setf

Certain forms in Lisp naturally define a memory location. For example, if the value of X is a structure of
type foo, then (foo-bar x) defines the bar field of the value of x. Or, if the value of y is a one- dimensiond
array, (aref y 2) defines the third element of y.

The setf specia form uses its first argument to define a place in memory, evaluates its second argument,
and stores the resulting vaue in the resulting memory location. For example,

> (setq a (make-array 3))
#(NIL NIL NIL)

> (aref a 1)

NI L

> (setf (aref a 1) 3)
3

> a

#(NIL 3 NL)

> (aref a 1)

3

> (defstruct foo bar)
FOO

> (setq a (make-fo0))
#s(FOO : BAR NI L)

> (foo-bar a)

NI L

> (setf (foo-bar a) 3)
3

> a

#s(FOO : BAR 3)

> (foo-bar a)

3

Setf isthe only way to set the fields of a structure or the elements of an array.

XLISP-PLUS3.0 A QUICK LISP TUTORIAL Page 15



Here are some more examples of setf and related functions.

> (setf a (make-array 1)) ;setf on a variable is equivalent to setq
#(NIL)

> (push 5 (aref a 0)) ; push can act |ike setf

(5)

> (pop (aref a 0)) ; SO can pop

5

> (setf (aref a 0) 5)

5

> (incf (aref a 0)) ;incf reads froma place, increnents,
6 ;and wites back

> (aref a 0)

6

Booleans and Conditionals

Lisp uses the self-evauating symbol nil to mean false. Anything other than nil means true. Unless we have
areason not to, we usually use the self-evaluating symbol t to stand for true.

Lisp provides a standard set of logica functions, for example and, or, and not. The and and or connectives
are short-circuiting: and will not evaluate any arguments to the right of the first one which evduates to nil,
while or will not evaluate any arguments to the right of the first one which evaluatesto t.

Lisp aso provides severa specid forms for conditional execution. The smplest of these is if. The first
argument of if determines whether the second or third argument will be executed:

> (if t 5 6)
5

> (if nil 5 6)
6

> (if 45 6)
5

If you need to put more than one statement in the then or else clause of an if statement, you can use the
progn specia form. Progn executes each statement in its body, then returns the value of the final one.

(setq a 7)
(setg b 0)

>
7
>
0
> (setq c 5)
5
> (if (> a b)
(progn
(setg a (+ b 7))
(setg b (+ ¢ 8)))
(setqg b 4)
)
13

Page 16 A QUICK LISP TUTORIAL XLISP-PLUS3.0



An if statement which lacks either a then or an else clause can be written using the when or unless special
form:

> (when t 3)

3

> (when nil 3)
NI L

> (unless t 3)
NI L

> (unless nil 3)
3

When and unless, unlike if, adlow any number of statements in their bodies (e.g., (when x a b ¢) is
equivaent to (if x (progn ab c)) ).

> (when t
(setqg a 5)
(+ a 6)

)

11

More complicated conditionals can be defined using the cond specia form, whichisequivaent to aniif ...
elseif ... fi congtruction.

A cond consists of the symbol cond followed by a number of cond clauses, each of which isalist. The
first element of a cond clause is the condition; the remaining elements (if any) are the action. The cond
form finds the first clause whose condition evauates to true (ie, doesn't evaluate to nil); it then executes
the corresponding action and returns the resulting value. None of the remaining conditions are evaluated;
nor are any actions except the one corresponding to the selected condition. For example:

> (setq a 3)

3
> (cond
((evenp a) a) ;if ais even return a
((>a7) (/ a2)) ;else if ais bigger than 7 return a/2
((<ab) (- al) ;else if ais smaller than 5 return a-1
(t 17) ;else return 17
)
2

If the action in the selected cond clause is missing, cond returns what the condition evaluated to:

> (cond ((+ 3 4)))
7

XLISP-PLUS3.0 A QUICK LISP TUTORIAL Page 17



Here's a clever little recursive function which uses cond. Y ou might be interested in trying to prove that it
terminates for all integers x greater than 1. (If you succeed, please publish the result.)

> (defun hotpo (x steps) ;hotpo stands for Half O Triple Plus One
(cond
((= x 1) steps)
((oddp x) (hotpo (+ 1 (* x 3)) (+ 1 steps)))
(t (hotpo (/ x 2) (+ 1 steps)))

) )

A

> (hotpo 7 0)

16

The Lisp case statement is like a C switch statement, or a Pascal case statement:

> (setqg x 'b)

B

> (case X
(a 5)
((de)7)
((b ) 3)
(ot herwi se 9)

)
3

The otherwise clause at the end means that if x isnot a b, d, e, or f, the case statement will return 9.

Iteration

The smplest iteration construct in Lisp is loop: aloop construct repeatedly executes its body until it hits a
return special form. For example,

> (setq a 4)

4
> (loop
(setqg a (+ a 1))
(when (> a 7) (return a))
)
8
> (loop

(setqg a (- a 1))
(when (< a 3) (return))
)

ni

The next smplest is dolist: dolist binds a variable to the elements of alist in order and stops when it hits the
end of thelist.

> (dolist (x "(a b c)) (print x))
A
B
C
ni

Page 18 A QUICK LISP TUTORIAL XLISP-PLUS3.0



Dolist ways returns nil. Note that the value of x in the above example was never nil: the nil below the C
was the value that dolist returned, printed by the read-eval-print loop.

The most complicated iteration primitive is caled do. A do statement looks like this:

> (do ((x 1 (+ x 1))
(y 1 (*vy 2))
((>x5)y)
(print vy)
(print '"working)
)
1
WORKI NG
2
WORKI NG
4
WORKI NG
8
WORKI NG
16
WORKI NG
32

The first part of ado specifies what variables to bind, what their initial values are, and how to update
them. The second part specifies a termination condition and a return value. The last part is the body. A do
form binds its variables to their initid vaues like alet, then checks the termination condition. Aslong asthe
condition is false, it executes the body repeatedly; when the condition becomes true, it returns the value of
the return-value form.

The do* form isto do as let* isto let.

Non-local Exits

The return specid form mentioned in the section on iteration is an example of a nonlocal return. Another
example is the return-from form, which returns a value from the surrounding function:

> (defun foo (x)
(return-fromfoo 3)
X
)
FOO
> (foo 17)
3

Actually, the return-from form can return from any named block -- it's just that functions are the only
blocks which are named by default. Y ou can create a named block with the block specia form:

> (bl ock foo
(return-fromfoo 7)
3

XLISP-PLUS3.0 A QUICK LISP TUTORIAL Page 19



The return specia form can return from any block named nil. Loops are by default labeled nil, but you can
make your own nil-labeled blocks:

> (bl ock ni
(return 7)
3

)
7

Another form which causes a nonlocal exit is the error form:

> (error "This is an error")
Error: This is an error

The error form applies format to its arguments, then places you in the debugger.

Funcall, Apply, and Mapcar
Earlier | promised to give some functions which take functions as arguments. Here they are:

> (funcall # + 3 4)

7

> (apply # + 3 4 ' (3 4))

14

> (mapcar # not '(t nil t nil t nil))
(NFIL T NIL T NIL T)

Funcdl calsitsfirst argument on its remaining arguments.

Apply isjust like funcall, except that its fina argument should be alist; the eements of that list are treated
asif they were additional arguments to a funcall.

The first argument to mapcar must be a function of one argument; mapcar applies this function to each
element of alist and collects the results in another list.

Funcall and apply are chiefly useful when their first argument is a variable. For instance, a search engine
could take a heurigtic function as a parameter and use funcall or apply to cal that function on a state
description. The sorting functions described later use funcall to call their comparison functions.

Mapcar, along with nameless functions (see below), can replace many loops.

Lambda

If you just want to create a temporary function and don't want to bother giving it a name, lambda is what
you need.

> # (lanmbda (x) (+ x 3))
#<Cl osure: #88b7lece>

> (funcall * 5)

8

Page 20 A QUICK LISP TUTORIAL XLISP-PLUS3.0



The combination of lambda and mapcar can replace many loops. For example, the following two forms are
equivalent:

> (do ((x "(1 2 3 45) (cdr x))

(y nil))

((nul'l x) (reverse y))

(push (+ (car x) 2) vy)
)

(34567)
> (mapcar #' (lanmbda (x) (+ x 2)) "(1 2 3 4 5))
(34567)

Sorting
Lisp provides two primitives for sorting: sort and stable-sort.

> (sort '(2 15 4 6) # <)
(1245 6)
> (sort '(2 15 4 6) # >)
(6 54 21)

The first argument to sort is a list; the second is a comparison function. The sort function does not
guarantee stability: if there are two elements a and b such that (and (not (< a b)) (not (< b a))), sort may
arrange them in either order. The stable-sort function is exactly like sort, except that it guarantees that two
equivaent elements appear in the sorted list in the same order that they appeared in the origina list.

Be careful: sort is alowed to destroy its argument, o if the original sequence is important to you, make a
copy with the copy-list or copy-seqg function.

Equality

Lisp has many different ideas of equality. Numerica equdity is denoted by =. Two symbols are eq if and
only if they are identical. Two copies of the same list are not eg, but they are equal.
> (eq "a 'a)

T

> (eq "a 'b)

NI L

> (: 3 4)

T

> (eq "(abc) "(abc))

NI L

> (equal '"(a bec) "(aboc))

T

> (eql 'a 'a)

T

> (eql 3 3)

T

> (equalp 3 3.0)

T

The eqgl predicate is equivalent to eq for symbols and to = for numbers.

XLISP-PLUS3.0 A QUICK LISP TUTORIAL Page 21



The equal predicate is equivalent to egl for symbols and numbers. It is true for two conses if and only if
their cars are equa and their cdrs are equal. It is true for two structures if and only if the structures are
the same type and their corresponding fields are equal .

The equap predicate is the most flexible of al. It returns t for case insengitive characters and strings,
numbers of different types, arrays, etc...

Some Useful List Functions
These functions al manipulate lists.

> (append '(1 2 3) '(4 5 6)) ;concatenate lists

(12345 6)

> (reverse '(1 2 3)) ;reverse the elements of a |ist
(3 21)

> (nmenber "a '(b d a c)) ;set nmenbership -- returns the first tai
(A O ;whose car is the desired el enent
> (find "a '(b dac)) ;anot her way to do set nenbership
A

> (find "(ab) "((ad) (ade) (abde) ()) :test # subsetp)

(A BDE ;find is nmore flexible though

> (subsetp '(a b) '"(a de)) ; set cont ai nnent

ni
> (intersection "(a b c) "(b)) ;set intersection

(B)

> (union '(a) '(b)) ; set union

(A B)

> (set-difference '(a b) '(a)) ;set difference
(B)

Subsetp, intersection, union, and set-difference all assume that each argument contains no duplicate
elements -- (subsetp '(aa) '(ab b)) is allowed to fail, for example.

Find, subsetp, intersection, union, and set-difference can al take a :test keyword argument; by default, they
dl ueegl.

Page 22 A QUICK LISP TUTORIAL XLISP-PLUS3.0



XLISP COMMAND LOOP

When XLISP is gtarted, it first tries to load the workspace "xlisp.wks', or an dternative file specified with
the "-wfilename" option, from the current directory. If that file doesn't exist, or the "“w" flag is in the
command line, XLISP builds an initia workspace, empty except for the built-in functions and symbols.

Then, providing no workspace file was loaded, XLISP attempts to load "init.Isp" from a path in XLPATH
or the current directory. This file can be modified to suit the user's requirements. It contains a number of
preference items.

If *startup-functions* is non-nil (default is nil), it istaken asalist of functions with no arguments which are
executed in sequence at thistime. This allows automatically starting applications stored in workspaces.

If the variable *load-file-arguments* is non-nil (default ist), it then loads any files named as parameters on
the command line (after appending ".Isp" to their names). If the "™-v" flag isin the command line, then the
files are loaded verbosdly.

The option "-tfilename’ will open a transcript file of the name "filename". At this time the top leve
command loop is entered. Thisis the function TOP-LEVEL-LOOP, by defauilt.

XLISP then issues the following prompt (unless standard input has been redirected):

>

This indicates that XLISP is waiting for an expression to be typed. If the current package is other than
USER, then the package name is printed before the ">".

When a complete expression has been entered, XLISP attempts to evauate that expression. If the
expression evaluates successfully, XLISP prints the result and then returns for another expression.

The following control characters can be used while XLISP is waiting for input:

Backspace delete last character

Del delete last character

tab tabs over (treated as space by XLISP reader)
ctrl-C goto top level

ctrl-G cleanup and return one level

ctrl-Z end of file (returns one level or exits program)
ctrl-P proceed (continue)

ctrl-T print information

Under MS-DOS or OS2 (at least) the following control characters can be typed while XLISP is executing
(providing standard input has not been redirected away from the console):

ctrl-B BREAK -- enter break loop
ctrl-S Pause until another key is struck
ctrl-C go to top level

ctrl-T print information

Under MS-DOS if the globa variable *dos-input* is set non-nil, DOS is used to read entire input lines.
Operation this way is convenient if certain DOS uitilities, such as CED, are used, or if XLISP is run under
an editor like EPSILON. In this case, norma command line editing is available, but the control keys will

XLISP-PLUS3.0 XLISP COMMAND LOOP Page 23



not work (in particular, ctrl-C will cause the program to exit!). Use the XLISP functions top-leve,
clean-up, and continue instead of ctrl-C, ctrl-G, and ctrl-P.

Under MS-DOS if the globa variable *dos-input* is nil, or under OS2 or Windows, a specid internd line
editor is used. In tis case the last 20 lines are saved, and can be recalled and viewed using the up and
down arrow keys. Duplicate lines are not saved.

An additiona feature is symbol name lookup. This command takes what appears to be an incomplete
symbol name to the left of the cursor and prints al interned symbol names that match.

The control keys for the editor are;

Up Arrow Previous command in queue

Down Arrow  Next command in queue

Left Arrow Move cursor to left

Right Arrow Move cursor to right

Home Move cursor to start of line

End Move cursor to end of line

Delete Delete character at cursor

Backspace Delete character to left of cursor

Escape Delete current line

Tab Look up partial symbol name to left of cursor

Characters are inserted at the current cursor position. Lines are limited in length to the width of the
display, and invaid keystrokes cause the bell to ring.

Page 24 XLISP COMMAND LOOP XLISP-PLUS3.0



BREAK COMMAND LOOP

When XLISP encounters an error while evaluating an expression, it attempts to handle the error in the
following way:

If the symbol "*breskenable*' is true, the message corresponding to the error is printed. If the error is
correctable, the correction message is printed.

If the symbol *tracenable*' is true, a trace back is printed. The number of entries printed depends on the
vaue of the symbol *tracdimit*'. If this symbol is set to something other than a number, the entire trace
back stack is printed.

XLISP then enters a read/eval/print loop o dlow the user to examine the state of the interpreter in the
context of the error. This loop differs from the norma top-level read/eva/print loop in that if the user
invokes the function tontinue', XLISP will continue from a correctable error. If the user invokes the
function ‘clean-up', XLISP will abort the break loop and return to the top level or the next lower numbered
break loop. When in abreak loop, XLISP prefixes the break level to the norma prompt.

If the symbol *bregkenable*' is nil, XLISP looks for a surrounding errset function. If oneis found, XLISP
examines the value of the print flag. If this flag is true, the error message is printed. In any case, XLISP
causes the errset function call to return nil.

If there is no surrounding errset function, XL1SP prints the error message and returns to the top level.

If XLISP was invoked with the command line argument "-b" then XLISP assumes it is running in batch
mode. In batch mode any uncaught error will cause XLISP to exit after printing the error message.

XLISP-PLUS3.0 BREAK COMMAND LOOP Page 25



DATA TYPES

There are severa different data types available to XLISP-PLUS programmers. Typical implementation
limits are shown for 32 hit word systems. Vaues in square brackets apply to 16 bit MS-DOS and
Windows implementations.

All data nodes are effectively cons cells consisting of two pointers and one or two bytes of identification
flags (9 or 10 bytes per cell). Node space is managed and garbage collected by XLISP. Array and string
storage is ether alocated by the C runtime or managed and garbage collected by XLISP (compilation
option). If C does the alocation, memory fragmentation can occur. Fragmentation can be eliminated by
saving the image and restarting XL1SP-PLUS.

* NIL
Unlike the original XLISP, NIL is a symbol (athough not in the *obarray*), to alowing setting its
properties.

e ligs
Either NIL or a CDR-linked list of cons cells, terminated by a symbol (typicaly NIL). Circular
lists are allowable, but can cause problems with some functions so they must be used with care.

* arrays
The CDR field of an array points to the dynamically allocated data array, while the CAR contains
the integer length of the array. Elements in the data array are pointers to other cells [Size limited
to about 16360].

* character strings
Implemented like arrays, except string array is byte indexed and contains the actual characters.
Note: unlike the underlying C, the null character (value 0) is vaid. [Size limited to about 65500]

e symbols
Implemented as a 4 element array. The elements are vaue cell, function cell, property list, and
print name (a character string node). Print names are limited to 100 characters. There are aso
flags for constant and special. Vaues bound to specia symbols (declared with DEFVAR or
DEFPARAMETER) are dways dynamically bound, rather than being lexically bound.

* fixnums (integers)
Small integers (> -129 and <256) are statically allocated and are thus aways EQ integers of the
same value. The CAR field is used to hold the value, which isa 32 bit signed integer.

* bignums (integers)
Big integers which don't fit in fixnums are stored in a special structure. Part of the bignum
extenson compilation option, when absent fixnums will overflow into flonums. Fixnums and
flonums are collectively referred to as "integers’. [Size limit is about 65500 characters for printing
or about 500000 hits for caculationg).

* ratios
The CAR fidd is used to hold the numerator while the CDR field is used to hold the denominator.
The numerator and denominator are stored as either both bignums or both fixnums. All ratios
results are returned in reduced form, and are returned as integers if the denominator is 1. Part of
the bignum extension. Ratios and integers are collectively referred to as rationals.

Page 26 DATATYPES XLISP-PLUS3.0



* characters
All characters are statically alocated and are thus EQ characters of the same value. The CAR
field is used to hold the value. In XLISP characters are "unsigned” and thus range in value from O
to 255.

* flonums (floating point numbers)
The CAR and CDR fields hold the vaue, which is typicaly a 64 bit IEEE floating point number.
Flonums and rational numbers are collectively referred to as real numbers.

* complex numbers
Part of the math extension compilation option. The CAR field is used to hold the rea part while
the CDR field is used to hold the imaginary part. The parts can be either both rationals (ratio or
integer) or both flonums. Any function which would return an integer complex number with a zero
imaginary part returns just the real integer.

* Objects
Implemented as an array of instance variable count plus one elements. The first element is the
object's class, while the remaining arguments are the instance variables.

* streams (file)
The CAR and CDR fields are used in a system dependent way as afile pointer.

* streams (unnamed -- String)
Implemented as a tconc-style list of characters.

* subrs (built-in functions)
The CAR fidld points to the actual code to execute, while the CDR field is an internal pointer to
the name of the function.

» fsubrs (special forms)
Same implementation as subrs.

* closures (user defined functions)
Implemented as an array of 11 ements:
name symbol or NIL
'lambda or 'macro
list of required arguments
optiona arguments as list of (<arg> <init> <specified-p>) triples.
&rest argument
&key arguments as list of (<key> <arg> <init> <specified-p>) quadruples.
&aux arguments as list of (<arg> <init>) pairs.
function body
. value environment (see page 112 for format)
10. function environment
11. argument list (unprocessed)

©ONO O WNE

* structures
Implemented as an array with first element being a pointer to the structure name string, and the
remaining elements being the structure elements.

* hashtables
Implemented as a structure of varying length with no generalized accessing functions, but with a
gpecia print function (print functions not available for standard structures).

XLISP-PLUS3.0 DATATYPES Page 27



* random-states
Implemented as a structure with a single element which is the random state (here a fixnum, but
could change without impacting XLISP programs).

* packages
Implemented using a structure. Packages must only be manipulated with the functions provided.

Page 28 DATATYPES XLISP-PLUS3.0



THE EVALUATOR

The process of evauation in XLISP:

Strings, characters, numbers of any type, objects, arrays, structures, streams, subrs, fsubrs and closures
evaluate to themselves.

Symbols act as variables and are evaluated by retrieving the value associated with their current binding.

* Ligsare evauated by examining the first lement of the list and then taking one of the following
actions:
If it isa symbol, the functional binding of the symboal is retrieved.
If it is a lambda expression, a closure is constructed for the function described by the lambda
expression.
If it isasubr, fsubr or closure, it stands for itself.
Any other valueisan error.

* Then, the vaue produced by the previous step is examined:
If it is a subr or closure, the remaining list elements are evaluated and the subr or closure is
applied to these evaluated expressions.
If it isan fsubr, the fsubr is called with the remaining list elements as arguments (uneval uated).
If it is a macro, the macro is expanded with the remaining list elements as arguments
(unevaluated). The macro expansion is then evaluated in place of the origina macro call. If the
symbol *displace-macros* is not nil, then the expanded macro will (destructively) replace the
origind macro expression. This means that the macro will only be expanded once, but the original
code will be lost. The displacement will not take place unless the macro expands into a list. The
standard XLISP practice is the macro will be expanded each time the expression is evauated,
which negates some of the advantages of using macros.

XLISP-PLUS3.0 THE EVALUATOR Page 29



HOOK FUNCTIONS

The evahook and applyhook facility are useful for implementing debugging programs or just observing the
operation of XLISP. It is possible to control evaluation of formsin any context.

If the symbol "*evalhook*' is bound to a function closure, then every call of eval will call this function. The
function takes two arguments, the form to be evaluated and execution environment. During the execution
of this function, *evahook* (and *gpplyhook*) are dynamicaly bound to nil to prevent undesirable
recursion. This"hook" function returns the result of the evaluation.

If the symbol *applyhook*" is bound to a function, then every function application within an eval will call
this function (Note that the function apply, and others which do not use eval, will not invoke the apply hook
function). The function takes two arguments, the function closure and the argument list (which is aready
evaluated). During execution of this hook function, * applyhook* (and *evalhook*) are dynamically bound
to nil to prevent undesired recursion. This function is to return the result of the function application.

Note that the hook functions cannot reset *evalhook* or *applyhook* to nil, because upon exit these
values will be reset. An escape mechanism is provided -- execution of 'top-level’, or any error that causes
return to the top leve, will unhook the functions. Applications should bind these values ether via 'progv',
‘evalhook’, or 'applyhook’.

The functions ‘evalhook’ and 'applyhook’ allowed for controlled application of the hook functions. The form
supplied as an argument to 'evalhook’, or the function application given to ‘applyhook’, are not hooked
themselves, but any subsidiary forms and applications are. In addition, by supplying nil values for the hook
functions, 'evalhook’ can be used to execute a form within a specific environment passed as an argument.

An additional hook function exists for the garbage collector. If the symbol *gc-hook*' is bound to a
function, then this function is called after every garbage collection. The function has two arguments. The
first is the total number of nodes, and the second is the number of nodes free. The return value is ignored.
During the execution of the function, *gc-hook* is dynamicaly bound to nil to prevent undesirable
recursion.

Page 30 HOOK FUNCTIONS XLISP-PLUS 3.0



LEXICAL CONVENTIONS

The following conventions must be followed when entering XL ISP programs:
Comments in XLISP code begin with a semicolon character and continue to the end of the line.

Except when escape sequences are used, symbol names in XLISP can consist of any sequence of non-
blank printable characters except the terminating macro characters:

O
and the escape characters:
\

In addition, the first character may not be '# (non-terminating macro character), nor may the symbol have
identical syntax with a numeric literal. Uppercase and lowercase characters are not distinguished within
symbol names because, by default, lowercase characters are mapped to uppercase on inpui.

Any printing character, including whitespace, may be part of a symbol name when escape characters are
used. The backdash escapes the following character, while multiple characters can be escaped by placing
them between vertical bars. At al times the backslash must be used to escape either escape characters.

For semantic reasons, certain character sequences should/can never be used as symbols in XLISP. A
single period is used to denote dotted lists. The symbol t is also reserved for use as the truth value. The
symbol nil represents an empty list.

Symbols starting with a colon are keywords, and will aways evaluate to themsalves. When the package
facility is compiled as part of XLISP, colons have a special significance. Thus colons should not be used as
part of a symbol name, except for these special uses.

Integer literals consist of a sequence of digits optionaly beginning with asign (‘+' or *-'). Unless the bignum
extension is used, the range of values an integer can represent is limited by the size of aC ‘long' on the
machine on which XLISP is running. The radix of the literal is determined by the value of the variable
*read-base* if it has an integer value within the range 2 to 36. However the literal can end with aperiod "'
in which case it is treated as a decimal number. It is generally not a good idea to assign a value to *read-
base* unless you are reading from afile of integersin a non-decimal radix. Use the read macros instead to
specify the base explicitly.

Ratio literals consist of two integer literals separated by a slash character (/'). The second number, the
denominator, must be positive. Ratios are automaticaly reduced to their canonica form; if they are
integral, then they are reduced to an integer.

Flonum (floating point) literals consist of a sequence of digits optionally beginning with asign ('+ or *-') and
including one or both of an embedded (not trailing) decima point or a trailing exponent. The optional
exponent is denoted by an 'E' or '€ followed by an optiona sign and one or more digits. The range of
values a floating point number can represent is limited by the size of a C 'double’ on most machines on
which XLISP is running.

Numeric literals cannot have embedded escape characters. If they do, they are treated as symbols. Thus
'12\3' is a symbol even though it would appear to be identical to '123'. Conversdly, symbols that could be
interpreted as numeric literals in the current radix must have escape characters.

Complex literals are constructed using a read-macro of the format #C(r i), wherer isthered part and i is
the imaginary part. The numeric fields can be any valid real number literdl. If either field has a flonum

XLISP-PLUS3.0 LEXICAL CONVENTIONS Page 31



literal, then both values are converted to flonums. Rational (integer or ratio) complex literals with a zero
imaginary part are automatically reduced to rationals.

Character literals are handled via the #\ read-macro construct:

#\<char>
#newline
#\space
#\rubout
#\C-<char>
#\M-<char>
#\M-C-<char>

== the ASCII code of the printing character

== ASCII linefeed character

== ASCII space character

== ASCII rubout (DEL)

== ASCII control character

== ASCII character with msb set (Meta character)
== ASCII control character with msb set

Literal strings are sequences of characters surrounded by double quotes (the " read-macro). Within quoted
strings the '\' character is used to allow non-printable characters to be included. The codes recognized are:

\\
\n
\t
\r
\f
\nnn

means the character '\'

means newline

means tab

means return

means form feed

means the character whose octal codeis nnn

Page 32

LEXICAL CONVENTIONS XLISP-PLUS 3.0



8 BIT ASCIl CHARACTERS

When used in an IBM PC environment (or perhaps others), XLISP-PLUS is compiled by default to alow
the full use of the IBM 8 bit ASCII character set, including all characters with diacritic marks. Note that
using such characters will make programs non-portable. XLISP-PLUS can be compiled for standard 7 bit
ASCII if desired for portability.

When 8 bit ASCII is enabled, the following system characteristics change:

Character codes 128 to 254 are marked as :constituent in the readtable. This means that any of the new
characters (except for the non printing character 255) can be symbol constituent. Alphabetic characters
which appear in both cases, such as é and E, are considered to be aphabetical for purposes of symbol
case control, while characters such as & that have no corresponding upper case are not considered to be
aphabetica.

The reader is extended for the character data type to alow all the additional characters (except code 255)
to be entered literaly, for instance "#\&". These characters are also printed literally, rather than using the
"M-" congtruct. Code 255 must till be entered as, and will be printed as, "#\M-Rubout".

Likewise strings do not need and will not use the backd ash escape mechanism for codes 128 to 254.

The functions aphanumericp, apha-char-p, upper-case-p, and lower-case-p perform as would be
expected on the extended characters, treating the diacritic characters as their unadorned counterparts. As
per the Common Lisp definition, both-case-p will only indicate t for characters available in both cases.

XLISP-PLUS3.0 8BIT ASCII CHARACTERS Page 33



READTABLES

The behavior of the reader is controlled by a data structure called a "readtable". The reader uses the
symbol *readtable* to locate the current readtable. This table controls the interpretation of input
characters -- if it is changed then the section LEXICAL CONVENTIONS may not apply. The readtable
is an array with 256 entries, one for each of the extended ASCII character codes. Each entry contains
one of the following values, with theinitial entries assigned to the values indicated:

‘white-space A whitespace character - tab, cr, If, ff, space
(:tmacro . fun) terminating readmacro- ()", ;"
(:nmacro . fun) non-terminating readmacro - #

sescape Single escape character -\

‘mescape  Multiple escape character - |

:congtituent Indicating a symbol constituent (all printing characters not listed above)
nil Indicating an invaid character (everything else)

In the case of :TMACRO and :NMACRO, the "fun" component is a function. This can ether be a built-in
readmacro function or a lambda expression. The function takes two parameters. The first is the input
stream and the second is the character that caused the invocation of the readmacro. The readmacro
function should return nil to indicate that the character should be treated as white space or a value consed
with nil to indicate that the readmacro should be treated as an occurrence of the specified value. Of
course, the readmacro code is free to read additional characters from the input stream. A :nmacro is a
symbol constituent except as the first character of a symbol.

As an example, the following read macro allows the square brackets to be used as a more visibly
appedling dternative to the SEND function:

(setf (aref *readtable* (char-int #J[)) ; #\[ table entry
(cons :tmacro
(lanbda (f c &aux ex) ; second arg is not used
(do ()

((eq (peek-char t f) #\]))
(setf ex (append ex (list (read f)))))
(read-char f) ; toss the trailing #\]
(cons (cons 'send ex) nil))))

(setf (aref *readtable* (char-int #]))
(cons :tmacro
(lanbda (f c)
(error "msplaced right bracket"))))

Page 34 READTABLES XLISP-PLUS3.0



XLISP defines several useful read macros;

'<expr> == (quote <expr>)

“<expr> == (backquote <expr>)

,<expr> == (comma <expr>)

,@<expr> == (comma-at <expr>)

#<expr> == (function <expr>)

#(<expr>...) == an array of the specified expressions

#S(<structtype> [<dothame> <vaue>]...)

== gtructure of specified type and initial values
#.<expr> ==result of evaluating <expr>
#d<digits> == adecimal number (integer or ratio)
#x<hdigits> == a hexadecima integer or ratio (0-9,A-F)
#o<odigits> == an octal integer or ratio (0-7)
#b<bdigits> == abinary integer or ratio (0-1)

#<base>r<digits> == an integer or ratio in base <base>, 2-36
# |7 == acomment

#:<symbol> == an uninterned symbol

#C(r i) == acomplex number

#+<expr> == conditional on feature expression true

#-<expr> == conditiona on feature expression fase

A feature expression is either a symbol or a list where the first element is AND, OR, or NOT and any
remaining dements (NOT requires exactly one) are feature expressions. A symbol istrueif it is a member
(by test function EQ) of the list in globa variable *FEATURES*. Init.Isp defines one initial festure,
:XLISP, and the features : TIMES, :GENERIC, :POSFCNS (various position functions), :MATH (complex
math), :BIGNUMS (bignums and ratios), :PC8 (character set), :PACKAGES, and :MULVALS depending
on the corresponding feature having been compiled into the XLISP executable. Utility files supplied with
XLISP-PLUS generaly add new features which are EQ to the keyword made from their file names.

XLISP-PLUS3.0 READTABLES Page 35



SYMBOL CASE CONTROL

XLISP-PLUS uses two variables, *READTABLE-CASE* and *PRINT-CASE* to determine case
converson during reading and printing of symbols. *READTABLE-CASE* can have the vaues
:UPCASE :DOWNCASE :PRESERVE or :INVERT, while *PRINT-CASE* can have the vaues
:UPCASE :DOWNCASE or :CAPITALIZE. By default, or when other values have been specified, both
are :UPCASE.

When *READTABLE-CASE* is :UPCASE, al unescaped lowercase characters are converted to
uppercase when read. When it is :DOWNCASE, all unescaped uppercase characters are converted to
lowercase. This mode is not very useful because the predefined symbols are al uppercase and would need
to be escaped to read them. When *READTABLE-CASE* is :PRESERVE, no conversion takes place.
This dlows case senditive input with predefined functions in uppercase. The final choice, :INVERT, will
invert the case of any symbol that is not mixed case. This provides case sengtive input while making the
predefined functions and variables appear to be in lowercase.

The printing of symbols involves the settings of both *READTABLE-CASE* and *PRINT-CASE*.
When *READTABLE-CASE* is :UPCASE, lowercase characters are escaped (unless PRINC is used),
and uppercase characters are printed in the case specified by *PRINT-CASE*. When
*READTABLE-CASE* is :DOWNCASE, uppercase characters are escaped (unless PRINC is used),
and lowercase are printed in the case specified by *PRINT-CASE*. The *PRINT-CASE* vdue of
:CAPITALIZE means that the first character of the symbol, and any character in the symbol immediately
following a non-alphabetical character are to be in uppercase, while all other alphabetica characters are to
be in lowercase. The remaining *READTABLE-CASE* modes ignore *PRINT-CASE* and do not
escape aphabetic characters. :PRESERVE never changes the case of characters while :INVERT inverts
the case of any non mixed-case symbols.

There are five major useful combinations of these modes:

A *READTABLE- CASE* : UPCASE *PRI NT- CASE* : UPCASE
"Traditional” mode. Case insendtive input; must escape to put lowercase characters in symbol names.
Symbols print exactly as they are stored, with lowercase characters escaped when PRIN1 is used.

B: *READTABLE- CASE* : UPCASE * PRI NT- CASE* : DOWNCASE

"Eyesaver" mode. Case insengitive input; must escape to put lowercase characters in symbol name.
Symbols print entirely in lowercase except symbols escaped when lowercase characters present with
PRIN1.

C. *READTABLE- CASE* : PRESERVE
"Oldfashioned case sensitive" mode. Case sensitive input. Predefined symbols must be typed in uppercase.
No apha quoting needed. Symbols print exactly as stored.

D: *READTABLE- CASE* : | NVERT

"Modern case sensitive” mode. Case sengtive input. Predefined symbols must be typed in lowercase.
Alpha quoting should be avoided. Predefined symbols print in lower case, other symbols print as they were
entered.

E: *READTABLE- CASE* : UPCASE * PRI NT- CASE* : CAPI TALI ZE
Like case B, except symbol names print capitalized.

Asfar as compatibility between these modes is concerned, data printed in mode A can beread in A, B, C,
or E. Data printed in mode B can beread in A, B, D, or E. Data printed in mode C can be read in mode C,
and if no lowercase symbolsin modes A, B and E as well. Data printed in mode D can be read in mode D,

Page 36 SYMBOL CASE CONTROL XLISP-PLUS 3.0



and if no (internaly) lowercase symbolsin modes A, B, and E as well. Data printed in mode E can be read
in modes A, B, and E. In addition, symbols containing characters requiring quoting are compatible among
all modes.

XLISP-PLUS3.0 SYMBOL CASE CONTROL Page 37



PACKAGES

When compiled in, XLISP-PLUS provides the "Packages' name hiding facility of Common Lisp. When in
use, there are multiple object arrays (name spaces). Each package has interna and external symbals.
Internal symbols can only normally be accessed while in that package, while external symbols can be
imported into the current package and used as though they are members of the current package. There
are three standard packages, XLISP, KEYWORD, and USER. In addition, some of the utility programs
are in package TOOLS. Normally one is in package USER, which is initidly empty. USER imports all
externa symbols from XLISP, which contains al the functions and variables described in the body of this
document. Symbols which are not imported into the current package, but are declared to be externa in
their home package, can be referenced with the syntax "packageName:symbolName" to identify symbol
symbolName in package packageName. Those symbols which are interna in their home package need
the dightly more difficult syntax "packageName::symbolName'.

The KEYWORD package is referenced by a symbol name with aleading colon. All keywords are in this
package. All keywords are automatically marked external, and are interned as constants with themselves
astheir values.

To build an application in a package (to avoid name clashes, for instance), use MAKE-PACKAGE to
create a new package (only if the package does not aready exist, use FIND-PACKAGE to test first), and
then precede the application with the IN-PACKAGE command to set the package. Use the EXPORT
function to indicate the symbols that will be accessible from outside the package.

To use an application in a package, either use IMPORT to make specific symbols accessible as local
interna symbols, use USE-PACKAGE to make them al accessible, or explicitly reference the symbols
with the colon syntax.

The file MAKEWKS.LSP shows how to build an initidl XLISP workspace such that al the tools are
accessible.

For the subtleties of the package facility, read the section called ‘Living with Packages in page 129, and
'‘Common Lisp the Language', second edition.

Page 38 PACKAGES XLISP-PLUS 3.0



LAMBDA LISTS

There are several forms in XLISP that require that a "lambda lig" be specified. A lambda ligt is a
definition of the arguments accepted by a function. There are four different types of arguments.

The lambda list starts with required arguments. Required arguments must be specified in every cal to the
function.

The required arguments are followed by the & optional arguments. Optional arguments may be provided or
omitted in a cal. An initidlization expresson may be specified to provide a default value for an & optiona
argument if it is omitted from a cdl. If no initidization expression is specified, an omitted argument is
initidlized to nil. It is aso possble to provide the name of a 'suppliedp’ variable that can be used to
determine if a call provided a value for the argument or if he initidization expresson was used. If
specified, the supplied-p variable will be bound to t if a vaue was specified in the call and nil if the default
value was used.

The &optiona arguments are followed by the &rest argument. The &rest argument gets bound to the
remainder of the argument list after the required and & optiona arguments have been removed.

The &rest argument is followed by the &key arguments. When a keyword argument is passed to a
function, a pair of values appears in the argument list. The first expression in the pair should evaluate to a
keyword symbol (a symbol that begins with a":'). The value of the second expression is the value of the
keyword argument. Like &optional arguments, &key arguments can have initialization expressons and
supplied-p variables. It is possble to specify the keyword to be used in a function call. If no keyword is
specified, the keyword obtained by adding a "' to the beginning of the keyword argument symbol is used.
In other words, if the keyword argument symboal is ‘foo’, the keyword will be ":foo'.

If identica keywords occur, those after the first are ignored. Extra keywords will signa an error unless
&alow-other-keys is present, in which case the extra keywords are ignored. Also, if the keyword :dlow-
other-keys is used in the function/macro call, and has a non-nil value, then additional keys will be ignored.

The &key arguments are followed by the &aux variables. These are loca variables that are bound during
the evauation of the function body. It is possible to have initidization expressions for the & aux variables.

Here is the complete syntax for lambda lists:

(<rarg>...

[&optional [<oarg> | (<oarg> [<init> [<svar>]])]...]

[&rest <rarg>]

[&key [<karg> | ([<karg> | (<key> <karg>)] [<init> [<svar>]])] ... [&allow-other-keys]]
[&aux [<aux> | (<aux> [<init>])]...])

where:
<rarg> is arequired argument symbol
<oarg> isan &optiona argument symbol
<rarg> isthe &rest argument symbol
<karg> isa&key argument symbol
<key> is akeyword symbol (starts with *:')
<aux> isan auxiliary variable symbol
<init> isan initialization expression
<svar> is asupplied-p variable symbol

XLISP-PLUS3.0 LAMBDA LISTS Page 39



GENERALIZED VARIABLES

Severa XLISP functions support the concept of generalized variables. The idea behind generalized
variables is that variables have two operations, access and update. Often two separate functions exist for
the access and update operations, such as SYMBOL-VALUE and SET for the dynamic symbol value, or
CAR and REPLACA for the car part of a cons cell. Code can be simplified if only one such function, the
access function, is necessary. The function SETF is used to update. SETF takes a "place form" argument
which specifies where the data is to be stored. The place form is identical to the function used for access.
Thus we can use (setf (car x) 'y) instead of (rplaca x 'y). Updates using place forms are "destructive" in
that the alter the data structure rather than rebuilding. Other functions which take place forms include
PSETF, GETF, REMF, PUSH, PUSHNEW, POP, INCF, and DECF.

XLISP has a number of place forms pre-defined in code. In addition, the function DEFSETF can be used
to define new place forms. Place forms and functions that take them as arguments must be carefully
defined so that no expression is evaluated more than once, and evaluation proceeds from left to right. The
result of this is that these functions tend to be dow. If multiple evaluation and execution order is not a
concern, aternative smpler functions can be un-commented in common.lsp and common2.Isp.

A place form may be one of the following:

* A symbol (variable name). In this case note that (setf x y) is the same as (setq x y).

* A function cal form of one of the following functions: CAR CDR NTH AREF ELT GET GETF
SYMBOL-VALUE SYMBOL-FUNCTION SYMBOL-PLIST GETHASH. The function GETF itself
has a place form which must additionally be vdid. The file COMMON2.LSP define additiona
placeforms (using DEFSETF) for LDB MASK-FIELD FIRST REST SECOND THIRD (through
TENTH) and CxR. When used as a place form, the second argument of LDB and MASK-FIELD
must be place forms and the number is not destructively modified.

* A macro form, which is expanded and re-evaluated as a place form.

* (send <obj> :<ivar>) to set the instance variable of an object (requires CLASSES.L SP be used).

* (<sym>-<dlement> <struct>) to set the element, <element>, of structure <struct> which is of type
<sym>/

* (<fiddsym> <args>) form name <fiedsym>, defined with DEFSETF or manualy, is used with the
arguments. When used with SETF, the function stored in property *setf* of symbol <fieldsym> is
applied to (<args> <setf expr>), or, dternatively, the function stored in property *setf-lambda* is
applied then the result is evaluated in the current context.

Page 40 GENERALIZED VARIABLES XLISP-PLUS3.0



OBJECTS

Definitions:
* selector - asymbol used to select an appropriate method

* message - asdector and alist of actual arguments
* method - the code that implements a message

Since XLISP was created to provide a smple basis for experimenting with object-oriented programming,
one of the primitive data types included is 'object’. In XLISP, an object consists of a data structure
containing a pointer to the object's class as well as an array containing the values of the object's instance
variables.

Officialy, there is no way to see insde an object (look at the values of its ingtance variables). The only
way to communicate with an object is by sending it a message.

You can send a message to an object using the 'send' function. This function takes the object as its first
argument, the message selector as its second argument (which must be a symbol) and the message
arguments as its remaining arguments.

The 'send’ function determines the class of the receiving object and attempts to find a method
corresponding to the message selector in the set of messages defined for that class. If the message is not
found in the object's class and the class has a super-class, the search continues by looking at the messages
defined for the super-class. This process continues from one super-class to the next until a method for the
message is found. If no method is found, an error occurs.

To perform a method lookup starting with the method's superclass rather than the object's class, use the
function 'send-super'. This allows a subclass to invoke a standard method in its parent class even though it
overrides that method with its own specialized version.

When a method is found, the evaluator binds the receiving object to the symbol 'self* and evaluates the
method using the remaining elements of the original list as arguments to the method. These arguments are
aways evauated prior to being bound to their corresponding formal arguments. The result of evauating
the method becomes the result of the expression.

Two objects, both classes, are predefined: Object and Class. Both Object and Class are of class Class.
The superclass of Class is Object, while Object has no superclass. Typical use is to create new classes
(by sending :new to Class) to represent application objects. Objects of these classes, created by sending
:new to the appropriate new class, are subclasses of Object. The Object method :show can be used to
view the contents of any object.

XLISP-PLUS3.0 OBJECTS Page 4l



The'Object’' CLASS The'Object’ CLASS

Object THE TOP OF THE CLASS HIERARCHY

Messages.

:show SHOW AN OBJECT'S INSTANCE VARIABLES
returns the object

:class RETURN THE CLASS OF AN OBJECT
returns the class of the object

:prinl [<stream>] PRINT THE OBJECT
<stream> t is*termina-io*, (default, or nil, is * standard-output*)
returns the object

[isnew THE DEFAULT OBJECT INITIALIZATION ROUTINE
returns the object

:superclass GET THE SUPERCLASS OF THE OBJECT
Defined in classes.|sp. (See :superclass below)
returns nil

:ismemberof <class> CLASS MEMBERSHIP
Defined in classes.|sp
<class> class name
returns tif object member of class, esenil

;iskindof <class> CLASS MEMBERSHIP
Defined in classes.|sp
<class> class name
returns t if object member of class or subclass of class, ese nil

‘respondsto <sel> SELECTOR KNOWLEDGE
Defined in classes.sp
<> message sel ector
returns t if object responds to message selector, else nil

:storeon READ REPRESENTATION
Defined in classes.Isp. Only works for members of classes created with defclass.
returns aligt, that when executed will create a copy of the object

Page 42 OBJECTS XLISP-PLUS3.0



The'Class CLASS The'Class CLASS

Class THE CLASS OF ALL OBJECT CLASSES (including itself)

Messages.

new CREATE A NEW INSTANCE OF A CLASS
returns the new class object

;isnew <ivars> [<cvars> [<super>]] INITIALIZE A NEW CLASS
<ivars> the list of instance variable symbol
<cvars> the list of class variable symbols
<super> the superclass (default is Object)
returns the new class object

:answer <msg> <fargs> <code> ADD A MESSAGE TO A CLASS
<msg> the message symbol
<fargs> the forma argument list (lambda list)
<code> alist of executable expressions
returns the object

‘superclass GET THE SUPERCLASS OF THE OBJECT
Defined in classes.|sp
returns the superclass (of the class)

:messages GET THE LIST OF MESSAGES OF THE CLASS
Defined in classes.|sp
returns association list of message selectors and closures for messages

:storeon READ REPRESENTATION
Defined in classes.|sp
returns alist, that when executed will re-create the class and its methods

When a new instance of aclassis created by sending the message ':new' to an existing class, the message
"isnew' followed by whatever parameters were passed to the “new' message is sent to the newly created
object. Therefore, when a new class is created by sending :new' to class 'Class the message "isnew' is
sent to Class automatically. To create a new class, afunction of the following format is used:

(setg <newclassname> (send Class :new <ivars> [<cvars> [<super>]]))
When a new classis created, an optional parameter may be specified indicating the superclass of the new

class. If this parameter is omitted, the new class will be a subclass of 'Object’. A class inherits al instance
variables, and methods from its super-class. Only class variables of a method's class are accessible.

XLISP-PLUS 3.0 OBJECTS Page 43



INSTANCE VARIABLES OF CLASS'CLASS:

MESSAGES - An association list of message names and closures implementing the messages.
IVARS - List of names of instance variables.

CVARS - List of names of class variables.

CVAL - Array of class variable values.

SUPERCLASS - The superclass of this class or nil if no superclass (only for class OBJECT).
IVARCNT - ingtance variables in this class (length of IVARS)

IVARTOTAL - total instance variables for this class and al superclasses of this class.

PNAME - printname string for this class.

Page 44 OBJECTS XLISP-PLUS3.0



SYMBOLS

All vaues are initidly nil unless otherwise specified. All are specid variables unless indicated to be
constants.

NIL - represents empty list and the Boolean value for "false". The vaue of NIL is nil, and cannot be
changed (it is a constant). (car NIL) and (cdr NIL) are aso defined to be nil.

T - Boolean value "true" is constant with value t.

sdlf - within amethod context, the current object (see page 40), otherwise initialy unbound.

object - constant, value is the class 'Object.’

class - constant, value is the class 'Class.

internal-time-units-per-second - integer constant to divide returned times by to get time in seconds.

pi - floating point approximation of pi (constant defined when math extension is compiled).
char-code-limit - a constant defined in common2.Isp indicating the exclusive upper limit of the vaues
returned by the function char-code. Its value is 128, which means that char-code will return valuesin
therange 0 .. 127.

*obarray* - the object hash table. Length of array is a compilation option. Objects are hashed using the
hash function and are placed on alist in the appropriate array dot. This variable does not exist when
the package feature is compiled in.

*package* - the current package. Do not ater. Part of the package feature.

*modules* - a list of names of the modules loaded so far. It is used by the functions provide and
require.

*terminal-io* - stream bound to keyboard and display. Do not dlter.

*standard-input* - the standard input stream, initialy stdin. If stdin is not redirected on the command
ling, then *terminakio* is used so that all interactive 1/0 uses the same stream.

*standard-output* - the standard output stream, initialy stdout. If stdout is not redirected on the
command line then *terminak-io* is used so that all interactive I/O uses the same stream.

*error-output* - the error output stream (used by al error messages), initialy same as *termina-io*.
*trace-output* - the trace output stream (used by the trace function), initialy same as *termina-io*.
*debug-io* - the break loop 1/0 stream, initidly same as *terminal-io*. System messages (other than
error messages) aso print out on this stream.

*preakenable* - flag controlling entering break 1oop on errors (see page 24)

*tracdist* - list of names of functions to trace, as set by trace function.

*tracenable* - enable trace back printout on errors (see page 24).

*tracelimit* - number of levels of trace back information (see page 24).

*evahook* - user subgtitute for the evaluator function (see page 29, and evahook and applyhook
functions).

*gpplyhook* - user substitute for function application (see page 29, and evahook and applyhook
functions).

*readtable* - the current readtable (see page 33).

*ge-flag* - controls the printing of gc messages. When non-nil, a message is printed after each garbage
collection giving the total number of nodes and the number of nodes free.

*gc-hook* - function to call after garbage collection (see page 29).

*integer-format* - format for printing integers (when not bound to a string, defaults to "%d" or "%ld"
depending on implementation). Variable not used when bignum extension ingtalled.

XLISP-PLUS3.0 SYMBOLS Page 45



» *float-format* - format for printing floats (when not bound to a string, defaults to "%g")

* *readtable-case* - symbol read and output case. See page 35 for details

* *read-base* - When bound to a fixnum in the range 2 through 36, determines the default radix used
when reading rational numbers. Part of bignum extension.

* *print-base* - When bound to a fixnum in the range 2 through 36, determines the radix used when
printing rationa numbers with prinl and princ. Part of bignum extension.

* *print-case* - symbol output case when printing. See page 35 for details

* *print-leve* - When bound to a number, list levels beyond this value are printed as #. Used by all
printing functions. Good precaution to avoid getting caught in circular lists.

e *print-length* - When bound to a number, lists longer than this value are printed as '...". Used by al
printing functions. Good precaution to avoid getting caught in circular lists.

* *dos-input* - When not nil, uses DOS line input function for read (see page 22).

* *digplace-macros* - When not nil, macros are replaced by their expansions when executed (see page
28).

* *random-state* - the default random-state used by the random function.

* *features* - list of features, initialy (:xlisp), used for #+ and # reader macros.

* *gtartup-functions® - list of functions to be executed when workspace started

* *command-line* - the XLISP command line, in the form of alist of strings, one string per argument.

* *|oadHfile-arguments* - When not nil, file arguments are loaded at startup.

* *top-level-loop* - Top level loop to utilize, defaults to TOP-LEVEL-LOOP. Note that this function can
only be restarted by executing TOP-LEVEL, and it never exits.

* *read-suppress* - When not nil, inhibits certain parts of reading. Used by the #+ and # macros.

There are several symbols maintained by the read/eva/print loop. The symbols +', ++', and +++' are
bound to the most recent three input expressions. The symbols *', *** and ***"' are bound to the most
recent three results. The symbol -' is bound to the expression currently being evaluated. It becomes the
veue of '+ at the end of the evaluation.

Page 46 SYMBOLS XLISP-PLUS3.0



EVALUATION FUNCTIONS

(eval <expr>) EVALUATE AN XLISP EXPRESSION
<expr> the expression to be evaluated
returns the result of evaluating the expression

(apply <fun> <arg>...<args>) APPLY A FUNCTION TO A LIST OF ARGUMENTS
<fun> the function to apply (or function symbol). May not be macro or fsubr.
<arg> initial arguments, which are CONSed to...
<args> the argument list
returns the result of applying the function to the arguments

(funcal <fun> <arg>...) CALL A FUNCTION WITH ARGUMENTS
<fun> the function to call (or function symbol). May not be macro or fsubr.
<arg> arguments to pass to the function
returns the result of caling the function with the arguments

(quote <expr>) RETURN AN EXPRESSION UNEVALUATED
fsubr.
<expr> the expression to be quoted (quoted)
returns <expr> uneval uated

(function <expr>) GET THE FUNCTIONAL INTERPRETATION
fsubr.
<expr> the symbol or lambda expression (quoted)
returns the functional interpretation

(complement <fun>) MAKE A COMPLEMENTARY FUNCTION

This function is intended to diminate the need for -IF-NOT functions and :TEST-NOT keys by
providing away to make complementary functions.

<fun> the function or closure (not macro or fsubr)
returns anew function closure that returns NOT of the result of the original function
(identity <expr>) RETURN THE EXPRESSION
<expr> the expression
returns the expression
(backquote <expr>) FILL IN A TEMPLATE

fsubr. Note: an improved backquote facility, which works properly when nested, is available by
loading the file backquot.lsp.

<expr> the template (quoted)

returns acopy of the template with comma and comma-at expressions expanded
(comma <expr>) COMMA EXPRESSION

returns (Never executed) As the object of a backquote expansion, the expression is

evaluated and becomes an object in the enclosing list.

XLISP-PLUS3.0 EVALUATION FUNCTIONS Page 47



(comma-at <expr>) COMMA-AT EXPRESSION
returns (Never executed) As the object of a backquote expansion, the expression is
evaluated (and must evaluate to a list) and is then spliced into the enclosing list.

(lambda <args> <expr>...) MAKE A FUNCTION CLOSURE
fsubr. See page 38 for afull description of the argument list.
<args> forma argument list (lambda list) (quoted)
<expr> expressions of the function body (quoted)
returns the function closure
(get-lambda-expression <closure>) GET THE LAMBDA EXPRESSION
<closure> the closure
returns the origina lambda expression, or nil if not a closure. Second return valueist if
closure has a non-globa environment, and the third return vaue is the name of
the closure.
(macroexpand <form>) RECURSIVELY EXPAND MACRO CALLS
<form> the form to expand
returns the macro expansion
(macroexpand-1 <form>) EXPAND A MACRO CALL
<form> the macro call form
returns the macro expansion

Page 48 EVALUATION FUNCTIONS XLISP-PLUS3.0



MULTIPLE VALUE FUNCTIONS

XLISP-PLUS supports multiple return values (via a compilation option) as in Common Lisp. Note that
most FSUBR control structure functions will pass back multiple return values, with the exceptions being
PROGL1 and PROG2.

(multiple-vaue-bind <varlist> <vform> [<form>...])
BIND RETURN VALUESINTO LOCAL CONTEXT
Defined as macro in common.|sp.

<vform> form to be evaluated
<varlist> list of variablesto bind to return vaues of vform
<form> forms evaluated sequentialy, asin LET, using local bindings
returns values of last form evaluated, or nil if no forms
(multiple-vadue-cal <fun> <form> ...) COLLECT VALUES AND APPLY FUNCTION
fsubr.
<fun> function to apply
<form> forms, which are evaluated, with result values collected
returns result of applying fun to al of the returned values of the forms
(multiple-vaue-ligt <form>) COLLECT MULTIPLE RETURNED VALUESINTO A LIST
Defined as macro in common.|sp.
<form> form to be evaluated
returns list of returned values
(multiple-vaue-progl <form> [<form> ...]) RETURN VALUES OF FIRST FORM
fsubr.
<form> one or more forms, which are evauated sequentialy
returns the result values of the first form
(multiple-value-setq <varlist> <form>) BIND RETURN VALUES TO VARIABLES
Defined as macro in common.|sp.
<form> form to be evaluated
<varlist> list of variablesto bind to return values of form
returns (undefined, implementation dependent)
(nth-vaue <index> <form>) EXTRACT A RETURN VALUE
fsubr.
<index> index into return values
<form> form which gets evaluated
returns the nth result value of executing the form
(values [<expr>]) RETURN MULTIPLE VALUES
<expr> expression(s) to be evaluated
returns each argument as a separate vaue

XLISP-PLUS3.0 MULTIPLE VALUE FUNCTIONS Page 49



(valueslig <list>) RETURN MULTIPLE VALUES FROM LIST
Defined in common.lsp.
<lig> alist
returns each list element as a separate value

Page 50 MULTIPLE VALUE FUNCTIONS XLISP-PLUS3.0



SYMBOL FUNCTIONS

(set <sym> <expr>) SET THE GLOBAL VALUE OF A SYMBOL
You can aso use (setf (symbol-value <sym>) <expr>)
<sym> the symbol being set
<expr> the new value
returns the new value
(setg [<sym> <expr>]...) SET THE VALUE OF A SYMBOL
fsubr. Y ou can aso use (setf <sym> <expr>)
<sym> the symbol being set (quoted)
<expr> the new value
returns the last new value or nil if no arguments
(psetg [<sym> <expr>]...) PARALLEL VERSION OF SETQ
fsubr. All expressions are evaluated before any assignments are made.
<sym> the symbol being set (quoted)
<expr> the new value
returns nil
(defun <sym> <fargs> <expr>...) DEFINE A FUNCTION
(defmacro <sym> <fargs> <expr>...) DEFINE A MACRO
fsubr. See also the section starting on page 134.
<sym> symbol being defined (quoted)
<fargs> formal argument list (lambda list) (quoted)
<expr> expressions congtituting the body of the function (quoted)
returns the function symbol
(gensym [<tag>]) GENERATE A SYMBOL
<tag> string or number
returns the new symbol, uninterned
(intern <pname> [<package>]) MAKE AN INTERNED SYMBOL
<pname> the symbol’s print name string
<package> the package (default is current package)
returns the new symbol. A second value is returned which is nil if the symbol did not

pre-exigt, :internd if it is an internd symbol, :externd if it is an external symbol,
or :inherited if it inherited via USE-PACKAGE.

(make-symbol <pname>) MAKE AN UNINTERNED SYMBOL
<pname> the symbol’s print name string
returns the new symbol

(symbol-name <sym>) GET THE PRINT NAME OF A SYMBOL
<sym> the symbol
returns the symbol's print name

XLISP-PLUS3.0 SYMBOL FUNCTIONS Page 51



(symbol-value <sym>) GET THE VALUE OF A SYMBOL

May be used as a place form.
<sym> the symbol
returns the symbol's vaue
(symbol-function <sym>) GET THE FUNCTIONAL VALUE OF A SYMBOL
May be used as a place form.
<sym> the symbol
returns the symbol's functional vaue
(symbol-plist <sym>) GET THE PROPERTY LIST OF A SYMBOL
May be used as a place form.
<sym> the symbol
returns the symbol's property list
(hash <expr> <n>) COMPUTE THE HASH INDEX
<expr> the object to hash
<n> the table size (positive fixnum less than 32768)
returns the hash index (fixnum O to n-1)
(makunbound <sym>) MAKE A SYMBOL VALUE BE UNBOUND
Y ou cannot unbind constants.
<sym> the symbol
returns the symbol
(fmakunbound <sym>) MAKE A SYMBOL FUNCTION BE UNBOUND
<sym> the symbol
returns the symbol
(unintern <sym> [<package>]) UNINTERN A SYMBOL
Defined in common.lsp if package extension not compiled.
<sym> the symbol
<package> the package to look in for the symbol
returns t if successful, nil if symbol not interned
(defconstant <sym> <va> [<comment>]) DEFINE A CONSTANT
fsubr.
<sym> the symbol
<va> the value
<comment> optional comment string (ignored)
returns the value

Page 52 SYMBOL FUNCTIONS XLISP-PLUS3.0



(defparameter <sym> <val> [<comment>]) DEFINE A PARAMETER

fsubr.

<sym> the symbol (will be marked "specid")
<vel> the value

<comment> optional comment string (ignored)
returns the value

(defvar <sym> [<va> [<comment>]]) DEFINE A VARIABLE
fsubr. Variable only initialized if not previoudy defined.
<sym> the symbol (will be marked "specid™)
<va> the initial vaue, or nil if absent
<comment> optional comment string (ignored)
returns the current value

(mark-as-specid <sym> [<flag>]) SET SPECIAL ATTRIBUTE
Also see definition of PROCLAIM and DECLARE.
<sym> symbol to mark
<flag> non-nil to make into a constant
returns nil, with symbol marked as specid and possibly as a constant

(declare [<declaration> ...]) DECLARE ARGUMENT ATTRIBUTES
Defined as macro in common.lsp, and provided to assist in porting Common Lisp applications to
XLISP-PLUS.
<declaration> list of local variable and attributes
returns nil. Produces an error message if attribute SPECIAL is used.

(proclaim <proc>) PROCLAIM GLOBAL SYMBOL ATTRIBUTES
Defined in common.lsp, and provided to assst in porting Common Lisp applications to
XLISP-PLUS.
<proc> a list of symbols. If the CAR of the list is SPECIAL, then the remaining

symbols are marked as specia variables.
returns nil

(copy-symbol <sym> [<flag>]) MAKE A COPY OF A SYMBOL
Defined in common2.Isp.
<sym> symbol to copy
<flag> if present and non-nil, copy value, function binding, and property list
returns un-interned copy of <sym>

XLISP-PLUS3.0 SYMBOL FUNCTIONS Page 53



GENERALIZED VARIABLE FUNCTIONS

(setf [<place> <expr>]...) SET THE VALUE OF A FIELD
fsubr.
<place> the field specifier
<expr> the new value
returns the last new value, or nil if no arguments

(psetf [<place> <expr>]...) PARALLEL VERSION OF SETF
fsubr. All expressions are evaluated and macro place forms expanded before any assignments are
made.
<place> the field specifier
<expr> the new value
returns nil

(defsetf <sym> <fcn>) DEFINE A SETF FIELD SPECIFIER

(defsetf <sym> <fargs> (<value>) <expr>...)
Defined as macro in common.lsp. Convenient, Common Lisp compatible dternative to setting
*setf* or * setf-lambda* property directly.

<sym> field specifier symbol (quoted)

<fcn> function to use (quoted symbol) which takes the same arguments as the field
specifier plus an additional argument for the value. The vaue must be
returned.

<fargs> formal argument list of unevaluated arguments (lambda list) (quoted).

<vaue> symbol bound to vaue to store (quoted)

<expr> The last expression must an expression to evaluate in the setf context. In this
respect, defsetf works like a macro definition.

returns the field specifier symbol

(push <expr> <place>) CONSTO A FIELD

Defined as macro in common.lsp. Only evauates place form arguments one time. It is
recommended that * displace-macros* be non-nil for best performance.

<place> field specifier being modified (see setf)
<expr> valueto consto fidd
returns the new value which is (CONS <expr> <place>)
(pushnew <expr> <place> & key :test :test-not :key) CONSNEW TO A FIELD

Defined as macro in common.lsp. Only evauates place form arguments one time. It is
recommended that * displace-macros* be non-nil for best performance.

<place> field specifier being modified (see setf)

<expr> valueto consto fidd, if not reedy MEMBER of field

‘test the test function (defaults to eql)

‘test-not the test function (sense inverted)

‘key function to apply to test function list argument (defaults to identity)
returns the new value which is (CONS <expr> <place>) or <place>

Page 54 GENERALIZED VARIABLE FUNCTIONS XLISP-PLUS3.0



(pop <place>) REMOVE FIRST ELEMENT OF A FIELD
Defined as macro in common.Isp. Only evauates place form arguments one time. It is
recommended that * displace-macros* be non-nil for best performance.

<place> the field being modified (see setf)

returns (CAR <place>), field changed to (CDR <place>)
(incf <place> [<value>]) INCREMENT A FIELD
(decf <place> [<value>]) DECREMENT A FIELD

Defined as macro in common.lsp. Only evauates place form arguments one time. It is
recommended that * displace-macros* be non-nil for best performance.

<place> field specifier being modified (see setf)
<vaue> Numeric value (default is 1)
returns the new value which is (+ <place> <value>) or (- <place> <vaue>)

XLISP-PLUS3.0 GENERALIZED VARIABLE FUNCTIONS Page 55



PACKAGE FUNCTIONS

These functions are defined when the packages extension is compiled. The <package> argument can be
either a string, symbol, or package object. The default when no package is given is the current package
(as bound to *package*), unless otherwise specified in the definition. The <symbols> argument may be
either asingle symbol or alist of symbols. In case of name conflicts, a correctable error occurs.

When the packages extenson is not compiled, simplified versons of apropos, apropos-lis, and
do-dl-symbols are provided in common2.Isp. In addition, init.Isp will define dummy versions of export and
in-package.
(apropos <string> [<package>]) SEARCH SYMBOLS FOR NAME MATCH
(apropos-list <string> [<package>])

Defined in common.|sp.

<dring> find symbols which contain this string as substring of print name
<package> package to search, if absent, or nil, search all packages
returns gopropos-list returns list of symbols, apropos prints them, dong with some
information, and returns nothing.
(defpackage <package> [<option>...]) (RE)DEFINE A PACKAGE
Defined as macro in common.lsp. Use to define a package, or redefine a package.
<package> the name of the package to (re)define
<option> any one or more of the following, none evauated, applied in this order:

(:shadow <symbol>...)
one or more symbols to shadow, as in function SHADOW
(:shadowing-import-from <symbol>...)
one or more symbols to shadow, asin function SHADOWING-IMPORT
(:use <package>...)
one or more packages to "use", as in function USE-PACKAGE
(:import-from <package> <symbol>...)
one or more symbols to import from the package, asin function IMPORT
(Cintern <symbol>...)
one or more symbols to be located or created in this package, as in function
INTERN
(:export <symbol>...)
one or more symbols to be exported from this package, as in function

EXPORT
returns the new or redefined package
(delete-package <package>) DELETE A PACKAGE
Deetes a package by uninterning all its symbols and removing the package.
<package> package to delete
returns t if successful

Page 56 PACKAGE FUNCTIONS XLISP-PLUS3.0



(do-symbols (<var> [<package> [<result>]]) <expr>...)) ITERATE OVER SYMBOLS

(do-external-symbols (<var> [<package> [<result>]]) <expr>...)

(do-dl-symbols (<var> [<result>]) <expr>...)
Defined as macros in common.lsp. DO-SYMBOLS iterates over al symbols in a single package,
DO-EXTERNAL-SYMBOLS iterates only over the externa symbols, and DO-ALL-SYMBOLS
iterates over al symbolsin al packages.

<var> variable to bind to symbol
<package> the package to search
<result> asingleresult form
<expr> expressions to evaluate (implicit tag-body)
returns result of result form, or nil if not specified
(export <symbols> [<package>]) DECLARE EXTERNAL SYMBOLS
<symbols> symbols to declare as external
<package> package symbal isin
returns t
(find-all-symbols <string>) FIND SYMBOLS WITH SPECIFIED NAME
<gtring> string or symbol (if latter, print name string is used)
returns list of al symbols having that print-name
(find-package <package>) FIND PACKAGE WITH SPECIFIED NAME
<package> package to find
returns package with name or nickname <package>, or nil if not found
(find-symbol <string> [<package>]) LOOK UP A SYMBOL
<string> print name to search for
<package> package to search in
returns two values, the first being the symbol, and the second being :internd if the

symbol isinterna in the package, :externa if it is external, or :inherited if it is
inherited via USE-PACKAGE. If the symbol was not found, then both return

vaues arenil.
(import <symbols> [<package>]) IMPORT SYMBOLSINTO A PACKAGE
<symbols> symbals to import (fully qualified names)
<package> package to import symbolsinto
returns t
(in-package <package>) SET CURRENT PACKAGE
fsubr. Sets the current package until next call or end of current LOAD.
<package> the package to enter
returns the package
(ligt-dl-packages) GET ALL PACKAGE NAMES
returns list of al currently existing packages

XLISP-PLUS3.0 PACKAGE FUNCTIONS Page 57



(make-package <package> & key :nicknames :use) MAKE A NEW PACKAGE

<package> name of new package to create
:nicknames list of package nicknames
use list of packagesto use (asin USE-PACKAGE)
returns the new package
(package-name <package>) GET PACKAGE NAME STRING
<package> package name
returns package name string
(package-nicknames <package>) GET PACKAGE NICKNAME STRINGS
<package> package name
returns list of package nickname strings
(package-obarray <package> [<external>]) GET AN OBARRAY
<package> package to use
<external> non-nil for external obarray (default), else internal obarray
returns the obarray (array of lists of symbols in package)
(package-shadowing-symbols <package>) GET LIST OF SHADOWING SYMBOLS
<package> the package
returns list of shadowing symbols in package
(package-use-list <package>) GET PACKAGES USED BY A PACKAGE
<package> the package
returns list of packages used by this package (asin USE-PACKAGE)

(package-used-by-list <package>)
GET PACKAGES THAT USE THIS PACKAGE

<package> the package

returns list of packages that use this package (as in USE-PACKAGE)
(package-vdid-p <package>) ISTHIS A GOOD PACKAGE?

<package> object to check

returns tif avalid package, else nil
(provide <name>) ADD NEW MODULE TO LIST OF MODULES

Defined in common.lsp.

<name> agtring or a symbol identifying the new module

returns the name of the module after adding it to the variable * modules*
(rename-package <package> <new> [<nick>]) RENAME A PACKAGE

<package> original package

<new> new package name (may be same as original name)

<nick> list of new package nicknames

returns the new package

Page 58 PACKAGE FUNCTIONS XLISP-PLUS3.0



(require <name>[<path>]) LOAD NEW MODULE
Defined in common.lsp.

<name> agtring, asymbol or aligt of them, identifying the module(s) (case sensitive)

<path> the pathname where name is to be found. Default, or nil is the specified by the
OS variable XLPATH.

returns the name of the module, if it was aready in the list *modules*; t if loading was

successful, nil otherwise

(shadow <symbols> [<package>]) MAKE SHADOWING SYMBOLS
If a symbol is not dready in the package, it is interned. The symbal is placed in the shadowing
symbols list for the package.

<symbols> the symbol or symbols to shadow
<package> package to put symbolsin
returns t

(shadowing-import <symbols> [<package>])
IMPORT SYMBOLS AND SHADOW
If a symbol exigts in the package, it is first uninterned. The symbol is imported, and then made

shadowing.
<symbols> the symbol or symbols to import and shadow
<package> package to put symbolsin
returns t
(symbol-package <symbol>) FIND THE PACKAGE OF A SYMBOL
<symbol> the symbol
returns the home package of the symbol, or nil if none
(unexport <symbols> [<package>]) MAKE SYMBOLS INTERNAL TO PACKAGE
<symbols> symbol or symbols to make internal
<package> package for symbols
returns t
(unuse-package <pkgs> [<package>]) REMOVE PACKAGES FROM USE LIST
<pkgs> A single package or list of packages
<package> Package in which to un-use packages (default is current package)
returns t
(use-package <pkgs> [<package>]) ADD PACKAGESTO USE LIST
<pkgs> A single package or list of packages
<package> Package in which to use packages in (default is current package)
returns t

XLISP-PLUS3.0 PACKAGE FUNCTIONS Page 59



PROPERTY LIST FUNCTIONS

Note that property names are not limited to symbols. All functions handle a symbol's property lists except
for GETF and REMF which work with any property list.

(get <sym> <prop> [<dflt>]) GET THE VALUE OF A SYMBOL'S PROPERTY
Use as a place form (with SETF) to add or change properties.
<sym> the symbol
<prop> the property name
<dflt> vaueto return if property not found, (default is nil)
returns the property value or <dflt> if property doesn't exist
(getf <place> <prop> [<dflt>]) GET THE VALUE OF A PROPERTY

Use GETF as a place form with SETF to add or change properties. Note: when used with SETF,
<place> must be avalid place form. It gets executed twice, contrary to Common Lisp standard.

<place> where the property list is stored
<prop> the property name
<dflt> vaueto return if property not found, (default is nil)
returns the property value or <dflt> if property doesn't exist
(putprop <sym> <va> <prop>) PUT A PROPERTY ONTO A PROPERTY LIST
Modern practiceisto use (SETF (GET...)...) rather than PUTPROP.
<sym> the symbol
<va> the property value
<prop> the property name
returns the property value
(remf <place> <prop>) DELETE A PROPERTY
Defined as a macro in common.|sp.
<place> where the property list is stored
<prop> the property name
returns t if property existed, else nil
(remprop <sym> <prop>) DELETE A SYMBOL'S PROPERTY
<sym> the symbol
<prop> the property name
returns nil

Page 60 PROPERTY LIST FUNCTIONS XLISP-PLUS3.0



HASH TABLE FUNCTIONS

A hash table is implemented as an structure of type hash-table. No general accessing functions are
provided, and hash tables print out using the angle bracket convention (not readable by READ). The first
element is the comparison function. The remaining elements contain association lists of keys (that hash to
the same value) and their data. See also the function hash on page 49.

(make-hash+table & key :size :test) MAKE A HASH TABLE
'gze fixnum size of hash table -- should be a prime number. Default is 31.
‘test comparison function. Defaults to egl.
returns the hash table
(gethash <key> <table> [<def>]) EXTRACT FROM HASH TABLE
May be used as a place form.
<key> hash key
<table> hash table
<def> vaue to return on no match (default is nil)
returns two values: the first is the associated data, if found, or <def> if not found.

The second ist if found or nil otherwise.

(remhash <key> <table>) DELETE FROM HASH TABLE
<key> hash key
<table> hash table
returns tif deleted, nil if not in table

(clrhash <table>) CLEAR THE HASH TABLE
<table> hash table
returns nil, al entries cleared from table

(hash-table-count <table>) NUMBER OF ENTRIES IN HASH TABLE
<table> hash table
returns integer number of entriesin table

(maphash <fcn> <table>) MAP FUNCTION OVER TABLE ENTRIES
<fcn> the function or function name, a function of two arguments, the first isbound to

the key, and the second the value of each table entry in turn.

<table> hash table
returns nil

XLISP-PLUS3.0 HASH TABLE FUNCTIONS Page 61



SEQUENCE FUNCTIONS

These functions work on sequences -- lists, arrays, or strings.

(concatenate <type> <expr> ...) CONCATENATE SEQUENCES

If result type is string, sequences must contain only characters.

<type> result type, one of CONS, LIST, ARRAY, or STRING

<expr> Zero or more sequences to concatenate

returns a sequence which is the concatenation of the argument sequences
(elt <expr> <n>) GET THE NTH ELEMENT OF A SEQUENCE

May be used as a place form

<expr> the sequence

<n> the index of element to return

returns the element if the index is in bounds, otherwise error
(map <type> <fcn> <expr> ...) APPLY FUNCTION TO SUCCESSIVE ELEMENTS
(map-into <target> <fcn> [<expr> ...])

<type> result type, one of CONS, LIST, ARRAY, STRING, or nil

<target> destination sequence to modify

<fcn> the function or function name

<expr> a sequence for each argument of the function

returns anew sequence of type <type> for MAP, and <target> for MAP-INTO
(every <fcn> <expr> ...) APPLY FUNCTION TO ELEMENTS UNTIL FALSE
(notevery <fcn> <expr> ...)

<fcn> the function or function name

<expr> a sequence for each argument of the function

returns every returns last evaluated function result

notevery returnst if there is a nil function result, else nil

(some <fcn> <expr> ...) APPLY FUNCTION TO ELEMENTS UNTIL TRUE
(notany <fcn> <expr> ...)

<fcn> the function or function name

<expr> a sequence for each argument of the function

returns some returns first non-nil function result, or nil

notany returns nil if there is a non-nil function result, eset

(length <expr>) FIND THE LENGTH OF A SEQUENCE
Note: acircular list causes an error. To detect acircular list, use LIST-LENGTH.
<expr> the list, vector or string
returns the length of the list, vector or string
(reverse <expr>) REVERSE A SEQUENCE
(nreverse <expr>) DESTRUCTIVELY REVERSE A SEQUENCE
<expr> the sequence to reverse
returns anew sequence in the reverse order

Page 62 SEQUENCE FUNCTIONS XLISP-PLUS3.0



(subseq <seg> <start> [<end>]) EXTRACT A SUBSEQUENCE

<segp the sequence

<start> the starting position (zero origin)

<end> the ending position + 1 (default, or nil, is end of sequence)

returns the sequence between <start> and <end>
(sort <seg> <test> &key :key) DESTRUCTIVELY SORT A SEQUENCE
(Sable-sort <seg> <test> & key :key) STABLE DESTRUCTIVE SORT

<seg> the sequence to sort

<test> the comparison function, must return t only if its first argument is strictly to the

left of its second argument.
‘key function to apply to comparison function arguments (defaults to identity)
returns the sorted sequence

(search <segl> <seq2> & key :test :test-not :key :startl :endl :start2 :end2)

<seql>
<seq2>
test
‘test-not
‘key
startl
endl
start2
end?
returns

SEARCH FOR SEQUENCE
the sequence to search for
the sequenceto search in
the test function (defaults to eq)
the test function (sense inverted)
function to apply to test function arguments (defaults to identity)
garting index in <seql>
index of end+1 in <seql> or nil for end of sequence
dtarting index in <seg2>
index of end+1 in <seg2> or nil for end of sequence
position of first match

(remove <expr> <seg> &key :test :test-not :key :gart :end :count :from-end)

REMOVE ELEMENTS FROM A SEQUENCE

(remove-if <test> <seg> & key :key :start :end :count :from-end)

REMOVE ELEMENTS THAT PASS TEST

(remove-if-not <test> <seq> & key :key :start :end :count :from-end)

<eXpI’>
<test>
<Seq>
test
‘test-not
‘key
Start
:end
:count

‘from-end

returns

REMOVE ELEMENTS THAT FAIL TEST
the element to remove
the test predicate, applied to each <seg> element in turn
the sequence
the test function (defaults to egl)
the test function (sense inverted)
function to apply to each <seg> edement (defaults to identity)
starting index
index of end+1, or nil for (length <seg>)
maximum number of elements to remove, negative values treated as zero,
(default, or nil, is unlimited)
if non-nil, behaves as though eements are removed from right end. This only
has an affect when :count is used.
copy of sequence with matching/non-matching expressions removed

XLISP-PLUS 3.0

SEQUENCE FUNCTIONS Page 63



(count <expr> <seg> & key :test :test-not :key :start :end :from-end)
COUNT MATCHING ELEMENTSIN A SEQUENCE

(count-if <test> <seq> & key :key :start :end :from-end) COUNT ELEMENTS THAT PASSTEST
(count-if-not <test> <seg> & key :key :start :end :from-end) = COUNT ELEMENTS THAT FAIL TEST

<expr> element to count

<test> the test predicate, applied to each <seg> element in turn

<seg> the sequence

‘test the test function (defaults to eql)

‘test-not the test function (sense inverted)

‘key function to apply to each <seq> element (defaults to identity)

Start starting index

end index of end+1, or nil for (length <seg>)

:from-end this argument is ignored

returns count of matching/non-matching elements

(find <expr> <seg> & key :test :test-not :key :start :end :from-end)
FIND FIRST MATCHING ELEMENT IN SEQUENCE
(find-if <test> <seg> & key :key :start :end :from-end)
FIND FIRST ELEMENT THAT PASSES TEST
(find-if-not <test> <seg> & key :key :start :end :from-end)
FIND FIRST ELEMENT THAT FAILS TEST

<expr> element to search for

<test> the test predicate, applied to each <seg> dement in turn
<seg> the sequence

‘test the test function (defaults to eql)

‘test-not the test function (sense inverted)

‘key function to apply to each <seg> eement (defaults to identity)
‘Start starting index

:end index of end+1, or nil for (length <seg>)

:from-end if non-nil search is done for last element

returns first matching/non-matching element of sequence, or nil

Page 64 SEQUENCE FUNCTIONS XLISP-PLUS3.0



(position <expr> <seg> & key itest :test-not :key :start :end :from-end)

FIND POSITION OF FIRST MATCHING ELEMENT IN SEQUENCE

(position-if <test> <seg> & key :key :start :end :from-end)

FIND POSITION OF FIRST ELEMENT THAT PASSES TEST

(position-if-not <test> <seq> &key :key :start :end :from-end)

<expr>
<test>
<Seq>
test
‘test-not
‘key
Start

:end
:from-end
returns

FIND POSITION OF FIRST ELEMENT THAT FAILSTEST
element to search for
the test predicate, applied to each <seg> element in turn
the sequence
the test function (defaults to eql)
the test function (sense inverted)
function to apply to each <seq> eement (defaults to identity)
starting index
index of end+1, or nil for (length <seg>)
if non-nil search is made for last element
position of first matching/non-matching element of sequence, or nil

(delete <expr> <seg> & key :key :test :test-not :start :end :count :from-end)

DELETE ELEMENTS FROM A SEQUENCE

(delete-if <test> <seg> & key :key :start :end :count :from-end)

DELETE ELEMENTS THAT PASS TEST

(delete-if-not <test> <seg> & key :key :dtart :end :count :from-end)

DELETE ELEMENTS THAT FAIL TEST

Note: These are the destructive versions of remove, remove-if and remove-if-not, respectively.

<exp|">
<test>
<sep
‘test
‘test-not
‘key
Start
-end
:count

from-end

returns

the element to delete

the test predicate, applied to each <seg> element in turn

the sequence

the test function (defaults to eq|l)

the test function (sense inverted)

function to apply to each <seg> element (defaults to identity)

sarting index

index of end+1, or nil for (length <seg>)

maximum number of elements to remove, negative values treated as zero
(default, or nil, is unlimited)

if non-nil, behaves as though eements are removed from right end. This only
has an affect when :count is used.

<seg> with the matching/non-matching expressions del eted

XLISP-PLUS 3.0

SEQUENCE FUNCTIONS Page 65



(substitute <r> <e> <s> & key :key :test :test-not :start :end :count :from-end)

SUBSTITUTE ELEMENTSIN A SEQUENCE

(subgtitute-if <r> <test> <s> & key :key :start :end :count :from-end)

SUBSTITUTE ELEMENTS THAT PASS TEST

(substitute-if-not <r> <test> <s> & key :key :start :end :count :from-end)

<r>
<e>
<test>
<s>
‘test
‘test-not
‘key
Start
-end
:count

‘from-end

returns

SUBSTITUTE ELEMENTS THAT FAIL TEST
the replacement expression
the element to replace
the test predicate, applied to each <s> element in turn
the sequence
the test function (defaults to eql)
the test function (sense inverted)
function to apply to each <s> element (defaults to identity)
starting index
index of end+1, or nil for (length <s>)
maximum number of elements to remove, negative vaues treated as zero,
(default, or nil, is unlimited)
if non-nil, behaves as though eements are removed from right end. This only
has an affect when :count is used.
copy of <s> with the matching/non-matching expressions substituted

(nsubstitute <r> <e> <s> & key :key :test :test-not :start :end :count :from-end)

DESTRUCTIVELY SUBSTITUTE ELEMENTSIN A SEQUENCE

(nsubstitute-if <r> <test> <s> & key :key :start :end :count :from-end)

DESTRUCTIVELY SUBSTITUTE ELEMENTS THAT PASS TEST

(nsubstitute-if-not <r> <test> <s> & key :key :start :end :count :from-end)

<r>

<e>
<test>
<s>
‘test
‘test-not
‘key
Start
:end
:count

:from-end

returns

DESTRUCTIVELY SUBSTITUTE ELEMENTS THAT FAIL TEST
the replacement expression
the element to replace
the test predicate, applied to each <s> element in turn
the sequence
the test function (defaults to eqll)
the test function (sense inverted)
function to apply to each <s> element (defaults to identity)
starting index
index of end+1, or nil for (length <s>)
maximum number of elements to remove, negative values treated as zero
(default, or nil, is unlimited)
if non-nil, behaves as though elements are removed from right end. This only
has an affect when :count is used.
<s> with the matching/non-matching expressions substituted

Page 66

SEQUENCE FUNCTIONS XLISP-PLUS3.0



(reduce <fcn> <seg> & key :initia-vaue :start :end) REDUCE SEQUENCE TO SINGLE VALUE

<fcn> function (of two arguments) to apply to result of previous function application
(or first element) and each member of sequence

<seg> the sequence

iinitigkvalue vaue to use as first argument in first function application rather than using the
first element of the sequence

‘Start sarting index

end index of end+1, or nil for (length <seg>)

returns if sequence is empty and there is no initid vaue, returns result of applying

function to zero arguments. If there is a single element, returns the element.
Otherwise returns the result of the last function application.

(remove-duplicates <seg> & key :test :test-not :key :start :end)
MAKE SEQUENCE WITH DUPLICATES REMOVED
(delete-duplicates <seg> & key :test :test-not :key :dtart :end)
DELETE DUPLICATES FROM SEQUENCE
Delete-duplicates defined in common2.1sp.

<segp the sequence
‘test comparison function (defaults to eql)
‘test-not comparison function (sense inverted)
‘key function to apply to test function arguments (defaults to identity)
‘Start starting index
.end index of end+1, or nil for (length <seg>)
returns copy of sequence with duplicates removed, or <seg> with duplicates deleted
(destructive)
(fill <seg> <expr> & key :gart :end) REPLACE ITEMSIN SEQUENCE
Defined in common.|sp.
<segp> the sequence
<expr> new value to place in sequence
‘Start sarting index
end index of end+1, or nil for (length <seg>)
returns sequence with items replaced with new item

(replace <seql> <seq2> & key :startl :endl :start2 :end2)
REPLACE ITEMS IN SEQUENCE FROM SEQUENCE
Defined in common.lsp.

<seql> the sequence to modify

<seq2> sequence with new items

Sartl gtarting index in <segl>

endl index of end+1 in <seql> or nil for end of sequence
‘Start2 garting index in <seq2>

.end2 index of end+1 in <seg2> or nil for end of sequence
returns first sequence with items replaced

XLISP-PLUS3.0 SEQUENCE FUNCTIONS Page 67



(make-sequence <type> <size> & key :initia-element) MAKE A SEQUENCE
Defined in common2.1sp.

<type> type of sequence to create: CONS LIST ARRAY or STRING
<sze> Size of sequence (non-negative integer)
iinitiakelement initid value of dl elementsin sequence
returns the new sequence
(copy-seq <seg>) COPY A SEQUENCE
Defined in common2.1sp.
<segp> sequence to copy
returns copy of the sequence, sequence elements are eq those in the original sequence
(merge <type> <seql> <seq2> <pred> &key :key) MERGE TWO SEQUENCES
Defined in common2.Isp. Non-destructive, although may be destructive in Common Lisp.
<type> type of result sequence: CONS LIST ARRAY or STRING
<seql> first sequence to merge
<seq2> second sequence to merge
<pred> function of two arguments which returns true if its first argument should
precede its second
‘key optiona function to apply to each sequence element before applying predicate
function (defaults to identity)
returns new sequence containing all the elements of seql (in order) merged with dl

the elements of seg2, according to the predicate function

(mismatch <s1> <s2> & key :test :test-not :key :startl :endl :gtart2 :end2)

FIND DIFFERENCE BETWEEN TWO SEQUENCES

Defined in common2.Isp.

<sl>
<s2>
test
‘test-not
‘key

startl
endl
Start2
:end?2
returns

first sequence

second sequence

the test function (defaults to eql)

the test function (sense inverted)

function to apply to each sequence element before applying test function
(defaults to identity)

darting index in <s1>

index of end+1 in <s1> or nil for end of sequence

garting index in <s2>

index of end+1 in <s2> or nil for end of sequence

integer index of first mismatch in s1, or nil if no mismatch

Page 68

SEQUENCE FUNCTIONS XLISP-PLUS3.0



LIST FUNCTIONS

(car <expr>)
May be used as a place form.
<expr> the list node
returns the car of the list node

(cdr <expr>)

May be used as a place form.
<expr> the list node
returns the cdr of the list node

(exxr <expr>)
(exxxr <expr>)
(exxxxr <expr>)
(first <expr>)
(second <expr>)
(third <expr>)
(fourth <expr>)
(fifth <expr>)
(sixth <expr>)
(seventh <expr>)
(eighth <expr>)
(ninth <expr>)
(tenth <expr>)
(rest <expr>)

RETURN THE CAR OF A LIST NODE

RETURN THE CDR OF A LIST NODE

ALL CxxR COMBINATIONS
ALL CxxxR COMBINATIONS
ALL CxxxxR COMBINATIONS
A SYNONYM FOR CAR

A SYNONYM FOR CADR

A SYNONYM FOR CADDR
A SYNONYM FOR CADDDR
FIFTH LIST ELEMENT
SIXTH LIST ELEMENT
SEVENTH LIST ELEMENT
EIGHTH LIST ELEMENT
NINTH LIST ELEMENT
TENTH LIST ELEMENT

A SYNONYM FOR CDR

May be used as place forms when common2lsp loaded. fifth through tenth defined in

common2.|sp.

returns the desired element(s) of the list

(cons <expr1> <exprz>)

<exprl> the car of the new list node
<expr2> the cdr of the new list node
returns the new list node

(acons <exprl> <expr2> <aist>)
Defined in common.lsp.

CONSTRUCT A NEW LIST NODE

ADD TO FRONT OF ASSOC LIST

<exprl> key of new association

<expr2> value of new association

<dist> association list

returns new association list, which is (cons (cons <exprl> <expr2>) <expr3>))
(list <expr>...) CREATE A LIST OF VALUES
(lis* <expr> ... <lis>)

<expr> expressions to be combined into alist

returns the new list

XLISP-PLUS 3.0

LIST FUNCTIONS

Page 69



(append <expr>...) APPEND LISTS

<expr> lists whose elements are to be appended
returns the new list
(revappend <exprl> <exprz>) APPEND REVERSE LIST
Defined in common2.lsp.
<exprl> fird ligt
<expr2> second list
returns new list comprised of reversed first list appended to second list
(list-length <ligt>) FIND THE LENGTH OF A LIST
<lis> the list
returns the length of the list or nil if thelist is circular
(last <ligt>) RETURN THE LAST LIST NODE OF A LIST
<lig> the list
returns thelast list node in the list
(tailp <sublist> <ligt>) ISONE LIST A SUBLIST OF ANOTHER?
Defined in common2.Isp.
<sublist> list to search for
<list> listto searchin
returns tif sublist is EQ one of the top level conses of list
(butlast <list> [<n>]) RETURN COPY OF ALL BUT LAST OF LIST
(nbutlast <list> [<n>]) DELETE LAST ELEMENTS OF LIST
nbutlast defined in common2.Isp.
<lis> the list
<n> count of elements to omit (default is 1)
returns copy of list with last element(s) absent, or, for nbutlast, the list with the last
elements deleted (destructive)
(nth <n> <list>) RETURN THE NTH ELEMENT OF A LIST
May be used as a place form.
<n> the number of the element to return (zero origin)
<lis> the list
returns the nth element or nil if the list isn't that long
(nthedr <n> <list>) RETURN THE NTH CDR OF A LIST
<n> the number of the element to return (zero origin)
<lig> the list
returns the nth cdr or nil if the list isn't that long

Page 70 LIST FUNCTIONS XLISP-PLUS3.0



(member <expr> <list> & key :test :test-not :key) FIND AN EXPRESSION IN A LIST

(member-if <test> <list> &key :key) FIND ELEMENT PASSING TEST
(member-if-not <test> <list> & key :key) FIND ELEMENT FAILING TEST

Functions member-if and member-if-not defined in common2.Isp.

<expr> the expression to find

<test> the test predicate

<lig> thelist to search

‘test the test function (defaults to eqll)

‘test-not the test function (sense inverted)

‘key function to apply to test function list argument (defaults to identity)

returns the remainder of the list starting with the expression or eement passing/failing

the test predicate

(assoc <expr> <aist> & key :test :test-not :key) FIND AN EXPRESSION IN AN A-LIST
(assoc-if <test> <dist> &key :key) FIND ELEMENT IN A-LIST PASSING TEST
(assoc-if-not <test> <alist> & key :key) FIND ELEMENT IN A-LIST FAILING TEST
(rassoc <expr> <alist> & key :test :test-not :key) FIND AN EXPRESSION IN AN A-LIST
(rassoc-if <test> <dist> & key :key) FIND ELEMENT IN A-LIST PASSING TEST
(rassoc-if-not <test> <alist> & key :key) FIND ELEMENT IN A-LIST FAILING TEST

All functions but assoc defined in common2.1sp. The rassoc functions match the CDRs of the &
list elements while the assoc functions match the cars.

<expr> the expression to find

<test> the test predicate

<dist> the association list

‘test the test function (defaults to egl)

‘test-not the test function (sense inverted)

‘key function to apply to alist argument (defaults to identity)

returns the dist entry or nil
(mapc <fen> <listl> <list>...) APPLY FUNCTION TO SUCCESSIVE CARS
(mapcar <fcn> <lig1> <list>...) APPLY FUNCTION TO SUCCESSIVE CARS
(mapcan <fcn> <ligtl> <list>...) APPLY FUNCTION TO SUCCESSIVE CARS
(mapl <fcn> <ligt1> <list>...) APPLY FUNCTION TO SUCCESSIVE CDRS
(maplist <fcn> <lig1> <list>...) APPLY FUNCTION TO SUCCESSIVE CDRS
(mapoon <fen> <list1> <lig>...) APPLY FUNCTION TO SUCCESSIVE CDRS

<fcn> the function or function name

<listn> alist for each argument of the function

returns the first list of arguments (mapc or mapl), alist of the values returned (mapcar

or maplist), or list of returned values nconc'd together (mapcan or mapcon)

XLISP-PLUS3.0 LIST FUNCTIONS Page 71



(subst <to> <from> <expr> &key :test :test-not :key) SUBSTITUTE EXPRESSIONS
(nsubst <to> <from> <expr> &key :test :test-not :key)
(nsubst-if <to> <test> <expr> &key :key)
(nsubst-if-not <to> <test> <expr> & key :key)
subst does minimum copying as required by Common Lisp. nsubst is the destructive version.

<to> the new expression
<from> the old expression (match to part of <expr> using test function
<test> test predicate
<expr> the expression in which to do the substitutions
‘test the test function (defaults to eql)
‘test-not the test function (sense inverted)
‘key function to apply to subtree test function expression argument (defaults to
identity)
returns the expression with substitutions
(sublis <alist> <expr> & key :test :test-not :key) SUBSTITUTE WITH AN A-LIST

(nsublis <alist> <expr> & key :test :test-not :key)
sublis does minimum copying as required by Common Lisp. nsublis is the destructive version.

<dig> the association list
<expr> the expression in which to do the substitutions
‘test the test function (defaults to eql)
‘test-not the test function (sense inverted)
‘key function to apply to subtree test function expression argument (defaults to
identity)
returns the expression with substitutions
(pairlis <keys> <values> [<dist>]) BUILD AN A-LIST FROM TWO LISTS
Defined in common.|sp.
<keys> list of association keys
<values> list of association values, same length as keys
<dist> existing association list (default is nil)
returns new association list
(make-ligt <sze> &key :initia-element) MAKE A LIST
Defined in common2.Isp.
<sze> gze of lig (non-negative integer)
iinitiakelement initiad vaue for each eement (default is nil)
returns the new list
(copy-list <list>) COPY THE TOPLEVEL OF A LIST
Defined in common.|sp.
<lig> the list
returns a copy of thelist (new cons cellsin top level)

Page 72 LIST FUNCTIONS XLISP-PLUS3.0



(copy-digt <dist>) COPY AN ASSOCIATION LIST
Defined in common.lsp.

<dig> the association list
returns acopy of the association list (keys and vaues not copies)
(copy-tree <tree>) COPY A TREE
Defined in common.|sp.
<tree> atree structure of cons cells
returns acopy of the tree structure
(intersection <list1> <list2> &key :test :test-not :key) SET FUNCTIONS

(union <ligt1> <ligt2> & key :test :test-not :key)

(set-difference <list1> <list2> & key :test :test-not :key)

(set-exclusve-or <ligt1> <list2> &key :test :test-not :key)

(nintersection <lisgt1> <list2> &key :test :test-not :key)

(nunion <ligt1> <lig2> & key :test :test-not :key)

(nset-difference <list1> <list2> & key :test :test-not :key)

(nset-exclusve-or <ligt1> <list2> &key :test :test-not :key)
set-exclusve-or and nset-exclusve-or defined in common.lsp. nunion, nintersection, and
nset-difference are aliased to their non-destructive counterparts in common.lsp. "n" versions are
potentially destructive.

<lig1> first list

<lig2> second lit

test the test function (defaults to eq)

‘test-not the test function (sense inverted)

‘key function to apply to test function arguments (defaults to identity)
returns intersection: ligt of dl eementsin both lists

union: list of all dementsin ether list
set-difference: ligt of al dementsin first list but not in second list
set-exclusve-or: ligt of dl eementsin only onelist

(adjoin <expr> <list> :test :test-not :key) ADD UNIQUE TO LIST
<expr> new element to add
<lis> the list
‘test the test function (defaults to eq)
‘test-not the test function <sense inverted)
‘key function to apply to test function arguments (defaults to identity)
returns if element not in list then (cons <expr> <list>), else <list>
(Idiff <list> <sublist>) GET INITIAL ELEMENTS OF LIST
Defined in common2.1sp.
<list> list to get eements of
<sublist> list to search for in <list> (uses tailp)
returns copy of list up to match with sublist

XLISP-PLUS3.0 LIST FUNCTIONS Page 73



DESTRUCTIVE LIST FUNCTIONS

Destructive functions that have non-destructive equivaents are listed in other sections. See aso sort,
map-into, nreverse, delete, delete-if, delete-if-not, fill, and replace under SEQUENCE FUNCTIONS, setf
under SYMBOL FUNCTIONS, and mapcan, mapcon, nbutlast, nsubst, nsubst-if, nsubst-if-not, nsublis,
nintersection, nunion, nset-difference, and nset-exclusive-or under LIST FUNCTIONS. Also, setf is a
destructive function.

(rplaca <list> <expr>) REPLACE THE CAR OF A LIST NODE
Modern practice isto use (setf (car <list>) <expr>)
<lig> the list node
<expr> the new value for the car of the list node
returns the list node after updating the car
(rplacd <list> <expr>) REPLACE THE CDR OF A LIST NODE
Modern practice isto use (setf (cdr <list>) <expr>)
<lis> the list node
<expr> the new value for the cdr of the list node
returns the list node after updating the cdr
(nconc <list>...) DESTRUCTIVELY CONCATENATE LISTS
<list> lists to concatenate
returns the result of concatenating the lists
(nreconc <ligt1> <list2>) DESTRUCTIVELY CONCATENATE LISTS
Defined in common2.1sp.
<lig1> firgt ligt
<lig2> second lit
returns second list concatenated to the end of the first list, which has been
destructively reversed

Page 74 DESTRUCTIVE LIST FUNCTIONS XLISP-PLUS3.0



ARRAY FUNCTIONS

Note that sequence functions also work on arrays.

(aref <array> <n>) GET THE NTH ELEMENT OF AN ARRAY
May be used as a place form
<array> the array (or string)
<n> the array index (fixnum, zero based)
returns the value of the array element

(make-array <size> &key :initia-element :initia-contents) MAKE A NEW ARRAY
<size> the size of the new array (fixnum)

;initia-element vaueto initidize dl array dements (default is nil)

initigkcontents  sequence used to initialize al array elements, consecutive sequence elements
are used for each array element. The length of the sequence must be the same
as the size of the array

returns the new array

(vector <expr>...) MAKE AN INITIALIZED VECTOR
<expr> the vector elements
returns the new vector

XLISP-PLUS3.0 ARRAY FUNCTIONS Page 75



STRING FUNCTIONS

Note: functions with names starting "string" will aso accept a symbol, in which case the symbal's print
name is used.

(string <expr>) MAKE A STRING FROM A SYMBOL, AN ASCII VALUE, OR A CHARACTER

<expr> an integer (which is first converted into its ASCII character value), string,
character, or symbol
returns the string representation of the argument
(string-trim <bag> <str>) TRIM BOTH ENDS OF A STRING
<bag> a string containing characters to trim
<str> the string to trim
returns atrimmed copy of the string
(string-l€eft-trim <bag> <str>) TRIM THE LEFT END OF A STRING
<bag> astring containing charactersto trim
<str> the string to trim
returns atrimmed copy of the string
(string-right-trim <bag> <str>) TRIM THE RIGHT END OF A STRING
<bag> a string containing charactersto trim
<str> the string to trim
returns atrimmed copy of the string
(string-upcase <str> & key :start :end) CONVERT TO UPPERCASE
<str> the string
Start the starting offset
end the ending offset + 1 or nil for end of string
returns a converted copy of the string
(string-downcase <str> & key :start :end) CONVERT TO LOWERCASE
<str> the string
‘Start the starting offset
:end the ending offset + 1 or nil for end of string
returns a converted copy of the string
(string-capitalize <str> & key :start :end) CAPITALIZE STRING
<str> the string
Start the starting offset
end the ending offset + 1 or nil for end of string
returns a converted copy of the string with each word having an initial uppercase letter

and following lowercase |etters

Page 76 STRING FUNCTIONS XLISP-PLUS3.0



(nstring-upcase <str> & key :start :end) CONVERT TO UPPERCASE

<str> the string
‘Start the starting offset
end the ending offset + 1 or nil for end of string
returns the converted string (not a copy)
(nstring-downcase <str> & key :dtart :end) CONVERT TO LOWERCASE
<str> the string
‘Start the starting offset
:end the ending offset + 1 or nil for end of string
returns the converted string (not a copy)
(nstring-capitaize <str> & key :start :end) CAPITALIZE STRING
<str> the string
‘Start the starting offset
end the ending offset + 1 or nil for end of string
returns the string with each word having an initial uppercase letter and following

lowercase |etters (not a copy)

(make-string <size> &key :initia-element) MAKE A STRING
Defined in common2.1sp.
<size> Sze of string (non-negative integer)
iinitial-element
initial value of al charactersin the string
returns the new string
(strcat <expr>...) CONCATENATE STRINGS

Defined as macro in init.Isp, and provided to maintain compatibility with XLISP.
See CONCATENATE for preferred function.

<expr> the strings to concatenate
returns the result of concatenating the strings
(string< <str1> <str2> & key :startl :endl :start? :end2) COMPARE CASE SENSITIVE STRINGS

(string<= <str1> <str2> & key :startl :endl :start? :end2)
(string= <str1> <str2> &key :sartl :endl :start2 :end2)
(string/= <str1> <str2> &key :startl :endl :start2 :end2)
(string>= <str1> <str2> & key :startl :endl :start2 :end2)
(string> <str1> <gtr2> & key :dartl :endl :start2 :end2)
Note: caseis significant with these comparison functions.

<strl> the first string to compare

<str2> the second string to compare

Sartl first substring starting offset

.endl first substring ending offset + 1 or nil for end of string
‘Start2 second substring starting offset

end2 second substring ending offset + 1 or nil for end of string
returns string=: t if predicate istrue, nil otherwise

others: If predicate is true then number of initial matching characters, dse nil

XLISP-PLUS3.0 STRING FUNCTIONS Page 77



(string-lessp <str1> <str2> & key :startl :endl :start2 :end2) COMPARE STRINGS

(string-not-greaterp <str1> <str2> & key :startl :endl :start? :end2)

(string-equal <str1> <str2> &key :startl :endl :start2 :end2)

(string-not-equa <str1> <str2> & key :startl :endl :start2 :end?2)

(string-not-lessp <str1> <str2> & key :startl :endl :start2 :end2)

(string-greaterp <strl> <str2> & key :dartl :endl :start2 :end2)
Note: case is not significant with these comparison functions -- al uppercase characters are
converted to lowercase before being compared.

<str1> the first string to compare

<str2> the second string to compare

Sartl first substring starting offset

-endl first substring ending offset + 1 or nil for end of string
Sart? second substring starting offset

end2 second substring ending offset + 1 or nil for end of string
returns string-equal: t if predicate is true, nil otherwise

others: If predicate is true then number of initial matching characters, ese nil

Page 78 STRING FUNCTIONS XLISP-PLUS3.0



CHARACTER FUNCTIONS

(char <gtring> <index>)

<gtring>
<index>
returns

(aphanumericp <chr>)

<chr>
returns

(upper-case-p <chr>)
<chr>
returns

(lower-case-p <chr>)
<chr>
returns

(apha-char-p <chr>)
<chr>
returns

(both-case-p <chr>)
<chr>
returns

(digit-char-p <chr>[<radix>])

<chr>
<radix>
returns

(char-code <chr>)
<chr>
returns

(code-char <code>)
<code>
returns

(char-upcase <chr>)
<chr>
returns

EXTRACT A CHARACTER FROM A STRING
the string
the string index (zero relative)
the ASCII code of the character

ISTHIS CHARACTER ALPHANUMERIC?
the character
true if the character is aphabetic or numeric, nil otherwise

ISTHIS AN UPPER CASE CHARACTER?
the character
true if the character is upper case, nil otherwise

ISTHIS A LOWER CASE CHARACTER?
the character
true if the character is lower case, nil otherwise

ISTHISAN ALPHABETIC CHARACTER?
the character
true if the character is alphabetic, nil otherwise

ISTHISAN ALPHABETIC (EITHER CASE) CHARACTER?
the character
true if the character is available in both cases, nil otherwise

ISTHISA DIGIT CHARACTER?
the character

theradix (default is 10)

the digit weight if character is a digit, nil otherwise

GET THE ASCII CODE OF A CHARACTER
the character
the ASCII character code (integer, parity bit stripped) in the range O .. char-
code-limit -1 (see page 43)

GET THE CHARACTER WITH A SPECIFIED ASCII CODE
the ASCII code (integer, range 0-127)
the character with that code or nil

CONVERT A CHARACTER TO UPPER CASE
the character
the upper case version of the character, if one exists, otherwise returns the
character

XLISP-PLUS 3.0

CHARACTER FUNCTIONS Page 79



(char-downcase <chr>) CONVERT A CHARACTER TO LOWER CASE

<chr> the character
returns the lower case version of the character, if one exists, otherwise returns the
character

(digit-char <n>[<radix>]) CONVERT A DIGIT WEIGHT TOA DIGIT
<n> the digit weight (integer)
<radix> the radix (default is 10)
returns the digit character or nil

(char-int <chr>) CONVERT A CHARACTER TO AN INTEGER
<chr> the character
returns the ASCII character code (range 0-255)

(int-char <int>) CONVERT AN INTEGER TO A CHARACTER
<int> the ASCI|I character code (treated modulo 256)
returns the character with that code

(character <expr>) CREATE A CHARACTER
Defined in common2.Isp.
<expr> single character symbol, string, or integer
returns <expr> converted into a character

(char-name <chr>) CHARACTER PRINT NAME
Defined in common2.1sp.
<chr> the character
returns string which is the name of the character, or nil if no name

(char< <chrl> <chr2>...) COMPARE CASE SENSITIVE CHARACTERS

(char<= <chrl1> <chr2>...)
(char= <chrl> <chr2>...)
(char/= <chr1> <chr2>...)
(char>= <chr1> <chr2>...)
(char> <chrl> <chr2>...)
Note: case is significant with these comparison functions.

<chr1> the first character to compare
<chr2> the second character(s) to compare
returns tif predicate istrue, nil otherwise

Page 80 CHARACTER FUNCTIONS XLISP-PLUS3.0



(char-lessp <chrl> <chr2>...) COMPARE CHARACTERS

(char-not-greaterp <chrl> <chr2>...)

(char-equal <chrl> <chr2>...)

(char-not-equal <chrl> <chr2>...)

(char-not-lessp <chrl> <chr2>...)

(char-greaterp <chrl> <chr2>...)
Note: case is not significant with these comparison functions -- all uppercase characters are
converted to lowercase before the comparison.

<chrl> the first string to compare
<chr2> the second string(s) to compare
returns tif predicate istrue, nil otherwise

XLISP-PLUS3.0 CHARACTER FUNCTIONS Page 81



STRUCTURE FUNCTIONS

XLISP provides a subset of the Common Lisp structure definition facility. No dot options are allowed, but
dots can have default initialization expressions.

(defstruct name [<comment>] <dot-desc>...) CREATE A NEW STRUCTURE
or
(defstruct (name <option>...) [<comment>] <dot-desc>...)

fsubr.

<name> the structure name symbol (quoted)

<option> option description (quoted)

<comment> comment string (ignored)

<dot-desc> dot descriptions (quoted)

returns the structure name

The recognized options are:

(:conc-name name)
(finclude name [<dot-desc>...])
(:print-function <function>)

Note that if :CONC-NAME appears, it should be before :INCLUDE.
Each dot description takes the form:

<name>
or:

(<name> <defexpr>)

If the default initidization expresson is not specified, the dot will be initidized to nil if no keyword
argument is passed to the creation function.

The optiona :PRINT-FUNCTION overrides the default #S notation. The function must take three
arguments, the structure instance, the stream, and the current printing depth.

DEFSTRUCT causes access functions to be created for each of the dots and aso arranges that SETF
will work with those access functions. The access function names are constructed by taking the structure
name, appending a '-' and then appending the dot name. This can be overidden by using the
:CONC-NAME option.

DEFSTRUCT adso makes a creation function caled MAKE-<structname>, a copy function called
COPY -<structname> and a predicate function caled <structname>P. The creation function takes
keyword arguments for each of the ots. Structures can be created using the #S( read macro, as well.

The property *struct-dots* is added to the symbol that names the structure. This property consists of an
association list of dot names and closures that evauate to the initid vaues (nil if no initid vaue
expression).

Page 82 STRUCTURE FUNCTIONS XLISP-PLUS3.0



For instance:

(defstruct foo bar (gag 2))

creates the following functions:

(foo-bar <expr>)

(setf (foo-bar <expr>) <val ue>)
(foo-gag <expr>)

placeform (f oo-gag <expr >)
(make-foo &key :bar :gag)
(copy-foo <expr>)

(foo-p <expr>)

XLISP-PLUS 3.0 STRUCTURE FUNCTIONS Page 83



OBJECT FUNCTIONS

Note that the functions provided in classes.|sp are useful but not necessary.

Messages defined for Object and Class are listed starting on page 41.

(send <object> <message> [<args>...]) SEND A MESSAGE
<object> the object to receive the message
<message> message sent to object
<args> arguments to method (if any)
returns the result of the method
(send-super <message> [<args>]) SEND A MESSAGE TO SUPERCLASS
Vadid only in method context
<message> message sent to method's superclass
<args> arguments to method (if any)
returns the result of the method
(defclass <sym> <ivars> [<cvars> [<super>]]) DEFINE A NEW CLASS
Defined as macro in classes.|sp.
<sym> symbol whose vaue is to be bound to the class object (quoted)
<ivars> list of instance variables (quoted). Instance variables specified either as <ivar>
or (<ivar> <init>) to specify non-nil default initid value
<cvars> list of class variables (quoted)
<super> superclass, or Object if absent

This function sends :SET-PNAME (defined in classes.|sp) to the new class to set the class print

name instance variable.

Methods for classes defined with defclass:

(send <object> :<ivar>)
Returns the specified instance variable

(send <object> :SET-IVAR <ivar> <vaue>)
Used to set an instance variable, typicaly with setf via (setf (send <object>
<ivar>) <vaue>)

(send <sym> :NEW {:<ivar> <init>})
Actually definition for :ISNEW. Crestes new object initidizing instance
variables as specified in keyword arguments, or to their default if keyword
argument is missing. Returns the object.

returns the new class object
(defmethod <class> <sym> <fargs> <expr> ...) DEFINE A NEW METHOD
Defined as macro in classes.|sp.
<class> Class which will respond to message
<sym> Message selector name (quoted)
<fargs> Formd argument list. Leading "sdlf* isimplied (quoted)
<expr> Expressions congtituting body of method (quoted)
returns the class object

Page 84

OBJECT FUNCTIONS XLISP-PLUS3.0



(defingt <class> <sym> [<args>...]) DEFINE A NEW GLOBAL INSTANCE
Defined as macro in classes.|sp.

<class> Class of new object
<sym> Symbol whose value will be set to new object
<args> Arguments passed to :NEW (typicaly initial values for instance variables)
returns the instance object
(tracemethod <class> [<sel>]) ADD A METHOD TO THE TRACE LIST
Defined in classes.|sp.
<class> Class containing method to trace
<s> Message selector of method to trace, if absent then trace all methods defined
in <class>
returns thetracelist
(untracemethod [<class> [<sel>]])) REMOVE A METHOD FROM THE TRACE LIST
Defined in classes.|sp.
<class> Class containing method to remove, if absent remove al methods of al classes
<s> Message selector of method to remove, if absent then remove al methods of
<class>
returns thetracelist

XLISP-PLUS 3.0 OBJECT FUNCTIONS Page 85



ARITHMETIC FUNCTIONS

Warning: integer calculations that overflow become floating point values as part of the math extension, but
give no error in the base-line XLISP. Integer calculations cannot overflow when the bignum extension is
compiled. On systems with | EEE floating point, the values +INF and -INF result from overflowing floating
point caculations.

The math extension option adds complex numbers, new functions, and additiona functionality to some
exising functions. The bignum extension, in addition, adds ratios, bignums, new functions and additiona

functionality to some existing functions. Because of the size of the extensions, and the performance loss
they entail, some users may not wish to include bignums, or bignums and math. This section documents the
math functions both with and without the extensions.

Functions that are described as having floating point arguments (SIN COS TAN ASIN ACOS ATAN
EXPT EXP SQRT) will take arguments of any type (real or complex) when the math extension is used. In
the descriptions, "rational number" means integer or ratio (bignum extension) only, and "real number"
means floating point number or rational only.

Any rationa results are reduced to canonical form (the gcd of the numerator and denominator is 1, the
denominator is positive); integral results are reduced to integers. Rational complex numbers with zero
imaginary parts are reduced to integers.

(truncate <expr> <denom>) TRUNCATES TOWARD ZERO
(round <expr> <denom>) ROUNDS TOWARD NEAREST EVEN INTEGER
(floor <expr> <denom>) TRUNCATES TOWARD NEGATIVE INFINITY
(ceiling <expr> <denom>) TRUNCATES TOWARD INFINITY

Round, floor, and ceiling, and the second argument of truncate, are part of the math extension.
Integers are returned asiis.

<expr> the real number
<denom> real number to divide <expr> by before converting
returns the integer result of converting the number, and, as a second return value, the

remainder of the operation, defined as. expr - result © denom. The type is
flonum if either argument is flonum, otherwise it is rational.

(float <expr>) CONVERTSAN INTEGER TO A FLOATING POINT NUMBER
<expr> the real number
returns the number as a flonum

(rational <expr>) CONVERTS A REAL NUMBER TO A RATIONAL
Rational numbers are returned asis. Part of the bignum extension.
<expr> the real number
returns the number as aratio or integer

(+ [<expr>...]) ADD A LIST OF NUMBERS
With no arguments returns addition identity, O (integer)
<expr> the numbers
returns the result of the addition

Page 86 ARITHMETIC FUNCTIONS XLISP-PLUS3.0



(- <expr>...)
<eXpI’>
returns

(* [<expr>...])

SUBTRACT A LIST OF NUMBERS OR NEGATE A SINGLE NUMBER
the numbers
the result of the subtraction

MULTIPLY A LIST OF NUMBERS

With no arguments returns multiplication identity, 1

<expr>
returns

(/ <expr>...)

the numbers
the result of the multiplication

DIVIDE A LIST OF NUMBERS OR INVERT A SINGLE NUMBER

With the bignum extension, division of integer numbers results in a rationa quotient, rather than
integer. To perform integer division, use TRUNCATE.

<expr>
returns

(1+ <expr>)
<exp|">
returns

(1- <expr>)
<eXpr>

returns

(rem <expr>...)

the numbers
the result of the division

ADD ONE TO A NUMBER
the number
the number plus one

SUBTRACT ONE FROM A NUMBER
the number
the number minus one

REMAINDER OF A LIST OF NUMBERS

With the math extension, only two arguments allowed.

<expr>
returns

(mod <exprl> <expr2>)

the real numbers (must be integers, without math extension)
the result of the remainder operation (remainder with truncating division)

NUMBER MODULO ANOTHER NUMBER

Part of the math extension.

<exprl>
<exprz>
returns

(min <expr>...)
<eXpr>
returns

(max <expr>...)
<eXpr>
returns

(abs <expr>)
<eXpr>
returns

real number

real number divisor (may not be zero)

the remainder after dividing <exprl> by <expr2> using flooring division, thus
there is no discontinuity in the function around zero.

THE SMALLEST OF A LIST OF NUMBERS
the rea numbers
the smallest number in the list

THE LARGEST OF A LIST OF NUMBERS
the real numbers
the largest number in the list

THE ABSOLUTE VALUE OF A NUMBER
the number
the absolute value of the number, which is the floating point magnitude for
complex numbers

XLISP-PLUS 3.0

ARITHMETIC FUNCTIONS Page 87



(signum <expr>) GET THE SIGN OF A NUMBER
Defined in common.lsp.

<expr> the number
returns zero if number is zero, one if pogtive, or negative one if negative. Numeric
type is same as number. For a complex number, returns unit magnitude but
same phase as number.
(float-sign <exprl> [<exprZ>]) APPLY SIGN TO A NUMBER
Defined in common2.lsp.
<exprl> the real number
<expr2> another real number (default is 1.0)
returns the number <expr2> with the sign of <exprl>
(ged [<n>...]) COMPUTE THE GREATEST COMMON DIVISOR
With no arguments returns 0, with one argument returns the argument.
<n> The number(s) (integer)
returns the grestest common divisor
(lem<n>...) COMPUTE THE LEAST COMMON MULTIPLE
Part of the math extension. A result which would be larger than the largest integer causes an
error.
<n> The number(s) (integer)
returns the least common multiple
(random <n> [<state>]) COMPUTE A PSEUDO-RANDOM NUMBER
<n> the real number upper bound
<state> arandom-state (default is *random-state*)
returns arandom number in range [O,n)
(make-random-state [<state>]) CREATE A RANDOM-STATE
<state> arandom-state, t, or nil (default, or nil, is *random-state*)
returns If <state> ist, arandom random-state, otherwise a copy of <state>
(sin <expr>) COMPUTE THE SINE OF A NUMBER
(cos <expr>) COMPUTE THE COSINE OF A NUMBER
(tan <expr>) COMPUTE THE TANGENT OF A NUMBER
(asin <expr>) COMPUTE THE ARC SINE OF A NUMBER
(acos <expr>) COMPUTE THE ARC COSINE OF A NUMBER
<expr> the floating point number
returns the sine, cosine, tangent, arc sine, or arc cosine of the number
(atan <expr> [<expr2>)) COMPUTE THE ARC TANGENT OF A NUMBER
<expr> the floating point number (numerator)
<expr2> the denominator (default is 1). May only be specified if math extension
installed
returns the arc tangent of <expr>/<expr2>

Page 88 ARITHMETIC FUNCTIONS XLISP-PLUS3.0



(sinh <expr>) COMPUTE THE HYPERBOLIC SINE OF A NUMBER

(cosh <expr>) COMPUTE THE HYPERBOLIC COSINE OF A NUMBER
(tanh <expr>) COMPUTE THE HYPERBOLIC TANGENT OF A NUMBER
(asinh <expr>) COMPUTE THE HYPERBOLIC ARC SINE OF A NUMBER
(acosh <expr>) COMPUTE THE HYPERBOLIC ARC COSINE OF A NUMBER
(atanh <expr>) COMPUTE THE HYPERBOLIC ARC TANGENT OF A NUMBER
Defined in common.Isp.
<expr> the number
returns the hyperbolic sine, cosine, tangent, arc sine, arc cosine, or arc tangent of the
number
(expt <x-expr> <y-expr>) COMPUTE X TO THE Y POWER
<x-expr> the number
<y-expr> the exponent
returns x to the y power. If y is an integer, then the result type is the same as the type
of x.
(exp <x-expr>) COMPUTE E TO THE X POWER
<x-expr> the floating point number
returns e to the x power
(cis <x-expr>) COMPUTE COSINE + | SINE
Defined in common.Isp.
<x-expr> the number
returns eto the ix power
(log <expr> [<base>]) COMPUTE THE LOGARITHM
Part of the math extension.
<expr> the number
<base> the base (default is €)
returns log base <base> of <expr>
(sqrt <expr>) COMPUTE THE SQUARE ROOT OF A NUMBER
<expr> the number
returns the sguare root of the number
(isgrt <expr>) COMPUTER THE INTEGER SQUARE ROOT OF A NUMBER
Defined in common2.1sp.
<expr> norn-negative integer
returns the integer square root, either exact or the largest integer less than the exact
vaue
(numerator <expr>) GET THE NUMERATOR OF A NUMBER
Part of the bignum extension.
<expr> rational number
returns numerator of number (number if integer)

XLISP-PLUS3.0 ARITHMETIC FUNCTIONS Page 89



(denominator <expr>) GET THE DENOMINATOR OF A NUMBER
Part of the bignum extension.

<expr> rational number

returns denominator of number (1 if integer)
(complex <redl> [<imag>]) CONVERT TO COMPLEX NUMBER

Part of the math extension.

<red> real number real part

<imag> real number imaginary part (default is O)

returns the complex number
(redlpart <expr>) GET THE REAL PART OF A NUMBER

Part of the math extension.

<expr> the number

returns the real part of a complex number, or the number itsaf if area number
(imagpart <expr>) GET THE IMAGINARY PART OF A NUMBER

Part of the math extension.

<expr> the number

returns the imaginary part of a complex number, or zero of the type of the number if a

real number

(conjugate <expr>) GET THE CONJUGATE OF A NUMBER

Part of the math extension.

<expr> the number

returns the conjugate of a complex number, or the number itsalf if area number
(phase <expr>) GET THE PHASE OF A NUMBER

Part of the math extension.

<expr> the number

returns the phase angle, equivalent to (atan (imagpart <expr>) (realpart <expr>))
(<<nl><n2>...) TEST FOR LESS THAN
(<=<n1><n2>..)) TEST FOR LESS THAN OR EQUAL TO
(=<n1><n2>...) TEST FOR EQUAL TO
(/= <n1><n2>...) TEST FOR NOT EQUAL TO
(>=<n1><n2>..)) TEST FOR GREATER THAN OR EQUAL TO
(><nl><n2>...) TEST FOR GREATER THAN

<nl> the first real number to compare

<nz2> the second real number to compare

returns the result of comparing <n1> with <n2>

Page 90 ARITHMETIC FUNCTIONS XLISP-PLUS3.0



BITWISE LOGICAL FUNCTIONS

Integers are treated as two's complement, which can cause what appears to be strange results when
negative numbers are supplied as arguments.

(logand [<expr>...]) THE BITWISE AND OF A LIST OF INTEGERS
With no arguments returns identity -1
<expr> the integers
returns the result of the and operation
(logior [<expr>...]) THE BITWISE INCLUSIVE OR OF A LIST OF INTEGERS
With no arguments returns identity O
<expr> the integers
returns the result of the inclusive or operation
(logxor [<expr>...]) THE BITWISE EXCLUSIVE OR OF A LIST OF INTEGERS
With no arguments returns identity O
<expr> the integers
returns the result of the exclusive or operation
(logeqv [<expr>...]) THE BITWISE EQUIVALENCE OF A LIST OF INTEGERS
With no arguments returns identity -1
<expr> the integers
returns the result of the equivalence operation
(lognand <exprl> <expr2>) BITWISE LOGICAL FUNCTIONS
(logandcl <exprl> <exprz>)
(logandc2 <exprl> <expr2>)

(lognor <expr1> <expr2>)
(logorcl <exprl> <expr2>)
(logorc2 <exprl> <expr2>)
Part of the bignum extension, the remaining logical functions of two integers.

<exprl> the first integer
<exprz2> the second integer
returns lognand: (lognot (logand <exprl> <expr2>))

logandcl: (logand (lognot <exprl>) <expr2>)
logandc2: (logand <expr1> (lognot <expr2>))
lognor: (lognot (logor <exprl> <expr2>))
logorcl: (logor (lognot <exprl>) <expr2>)
logorc2: (logor <exprl> (lognot <expr2>))

(lognot <expr>) THE BITWISE NOT OF A INTEGER
<expr> the integer
returns the bitwise inversion of integer

XLISP-PLUS3.0 BITWISE LOGICAL FUNCTIONS Page 91



(logtest <exprl> <expr2>) TEST BITWISE AND OF TWO INTEGERS
Defined in common.lsp when the bignum extension not |oaded.

<exprl> the first integer
<expr2> the second integer
returns tif the result of the and operation is non-zero, ese nil
(loghitp <pos> <expr>) TEST BIT OF INTEGER
Part of the bignum extension.
<pos> non-negative fixnum bit position, asin (expt 2 <pos>)
<expr> integer to test
returns tif thebitis"1", dsenil
(logcount <expr>) COUNT BITSIN AN INTEGER
Part of the bignum extension.
<expr> integer
returns if <expr> is negative, returns the number of O bits, else returns the number of 1
bits
(integer-length <expr>) CALCULATE LENGTH OF AN INTEGER
Part of the bignum extension.
<expr> integer
returns the minimum number of bits necessary to represent the integer, excluding any
sgn bit
(ash <exprl> <expr2>) ARITHMETIC SHIFT
Part of the math extension.
<exprl> integer to shift
<expr2> number of bit positions to shift (pogtive isto left)
returns shifted integer
(byte <size> <pos>) CREATE A BYTE SPECIFIER
(byte-size <spec>) GET SPECIFIER SIZE FIELD
(byte-position <spec>) GET SPECIFIER POSITION FIELD

Defined in common2.lsp. A "byte specifier” is implemented as a CONS cell with the CAR being
the size and the CDR being the position. These functions are aiases for cons, car, and cdr,

respectively.

<size> Sze of byte field (non-negative integer)

<pos> starting position of byte field (non-negative integer), which is position with least
bit weight

<spec> byte specifier (a CONS cdll)

returns BYTE returns the specifier, BYTE-SIZE returns the size field, and

BYTE-POSITION returns the starting position

Page 92 BITWISE LOGICAL FUNCTIONS XLISP-PLUS3.0



(Idb <spec> <int>) LOAD BYTE
Defined in common2.1sp. Idb can be used with setf, in which case it performs a stb followed by a

etf into the field.
<spec> specifier of byte to extract
<int> integer to extract byte from
returns the extracted byte, a non-negative integer
(Idb-test <spec> <int>) TEST A BYTE
Defined in common2.1sp.
<spec> specifier of byte to test
<int> integer containing byte to test
returns tif byteis zero, ese nil
(mask-field <spec> <int>) EXTRACT UNDER MASK

Defined in common2.Isp. MASK-FIELD can be used with setf, in which case it performs a
DEPOSIT-FIELD followed by a sif into the field.

<spec> specified byte to extract
<int> integer to extract byte from
returns the extracted byte in the same bit position asit was in <int>
(dpb <new> <spec> <int>) DEPOSIT BYTE
Defined in common2.1sp.
<new> integer byte to insert
<spec> specifier of position and size of byte
<int> integer to insert byte into
returns <int> with <new> in the bit positions specified by <spec>
(deposit-field <new> <spec> <int>) INSERT UNDER MASK
Defined in common2.1sp.
<new> integer containing byte field to insert
<spec> specifier of position and size of byte
<int> integer to insert byte into
returns <new> at <spec> replacing bits at <spec> in <int>

XLISP-PLUS3.0 BITWISE LOGICAL FUNCTIONS Page 93



PREDICATE FUNCTIONS

(atom <expr>)
<expl’>
returns

(symbolp <expr>)
<expr>
returns

(numberp <expr>)
<expl’>
returns

(null <expr>)
<expl’>
returns

(not <expr>)
<expl’>
returns

(listp <expr>)
<expr>
returns

(endp <list>)
<list>
returns

(consp <expr>)
<expl’>
returns

(constantp <expr>)
<expl’>
returns

(specialp <expr>)
<@(pr>
returns

(integerp <expr>)
<@(pr>
returns

ISTHISAN ATOM?
the expression to check
t if the value is an atom, nil otherwise

ISTHISA SYMBOL?
the expression to check
tif the expresson is a symboal, nil otherwise

ISTHISA NUMBER?
the expression to check
tif the expression is a number, nil otherwise

ISTHISAN EMPTY LIST?
the list to check
tif thelist is empty, nil otherwise

ISTHISFALSE?
the expression to check
t if the value isnil, nil otherwise

ISTHISA LIST?

the expression to check
t if the value is acons or nil, nil otherwise

ISTHISTHE END OF A LIST?
thelist
t if the value isnil, nil otherwise

ISTHIS A NON-EMPTY LIST?
the expression to check
tif the valueis acons, nil otherwise

ISTHISA CONSTANT?
the expression to check
t if the value is a constant (basically, would EVAL <expr> repeatedly return
the same thing?), nil otherwise

ISTHIS A SPECIAL SYMBOL?
the expression to check
tif the valueis a symbol which is SPECIAL, nil otherwise

ISTHIS AN INTEGER?
the expression to check
tif the valueis an integer, nil otherwise

Page 94

PREDICATE FUNCTIONS XLISP-PLUS 3.0



(floatp <expr>) ISTHISA FLOAT?

<expr> the expression to check
returns tif thevalueisafloat, nil otherwise

(rationalp <expr>) ISTHISA RATIONAL NUMBER?
Part of the bignum extension.
<expr> the expression to check
returns tif the vaueisrational (integer or ratio), nil otherwise

(realp <expr>) ISTHIS A REAL NUMBER?
Defined in common2.Isp.
<expr> the expression to check
returns t if the value is rationa or float, nil otherwise

(complexp <expr>) ISTHISA COMPLEX NUMBER?
Part of the math extension.
<expr> the expression to check
returns t if the value is a complex number, nil otherwise

(stringp <expr>) ISTHISA STRING?
<expr> the expression to check
returns tif the valueis a tring, nil otherwise

(characterp <expr>) ISTHISA CHARACTER?
<expr> the expression to check
returns t if the value is a character, nil otherwise

(arrayp <expr>) ISTHISAN ARRAY?
<expr> the expression to check
returns tif the valueisan array, nil otherwise

(array-in-bounds-p <expr> <index>) ISARRAY INDEX IN BOUNDS?
Defined in common2.1sp.
<expr> the array
<index> index to check
returns tif index isin bounds for the array, nil otherwise

(streamp <expr>) ISTHISA STREAM?
<expr> the expression to check
returns tif the value is a stream, nil otherwise

(opertstream-p <stream>) IS STREAM OPEN?
<stream> the stream
returns tif the stream is open, nil otherwise

XLISP-PLUS3.0 PREDICATE FUNCTIONS Page 95



(input-stream-p <stream>) IS STREAM READABLE?

<stream> the stream
returns tif stream is readable, nil otherwise

(output-stream-p <stream>) IS STREAM WRITABLE?
<stream> the stream
returns tif stream iswritable, nil otherwise

(objectp <expr>) ISTHIS AN OBJECT?
<expr> the expression to check
returns tif the valueis an object, nil otherwise

(classp <expr>) ISTHISA CLASS OBJECT?
<expr> the expression to check
returns t if the value is a class object, nil otherwise

(hash-table-p <expr>) ISTHISA HASH TABLE?
Defined in common2.1sp.
<expr> the expression to check
returns tif the value is a hash table, nil otherwise

(keywordp <expr>) ISTHIS A KEYWORD?
Defined in common2.Isp.
<expr> the expression to check
returns tif the value is a keyword symbol, nil otherwise

(packagep <expr>) ISTHIS A PACKAGE?
Defined in common2.Isp.
<expr> the expression to check
returns tif the value is a package, nil otherwise

(boundp <sym>) ISA VALUE BOUND TO THIS SYMBOL?
<sym> the symbol
returns tif avaueisbound to the symbal, nil otherwise

(fboundp <sym>) ISA FUNCTIONAL VALUE BOUND TO THIS SYMBOL?
<sym> the symbol
returns tif afunctiona vaueis bound to the symbal, nil otherwise

(functionp <sym>) ISTHISA FUNCTION?
Defined in common.lsp.
<expr> the expression to check
returns t if the value is a function -- that is, it can be applied to arguments. Thisistrue

for any symbol (even those with no function binding), list with car being
lambda, a closure, or subr. Otherwise returns nil.

Page 96 PREDICATE FUNCTIONS XLISP-PLUS3.0



(minusp <expr>) IS THIS NUMBER NEGATIVE?

<expr> the number to test
returns t if the number is negative, nil otherwise

(zerop <expr>) ISTHISNUMBER ZERO?
<expr> the number to test
returns t if the number is zero, nil otherwise

(plusp <expr>) IS THIS NUMBER POSITIVE?
<expr> the number to test
returns t if the number is positive, nil otherwise

(evenp <expr>) ISTHISINTEGER EVEN?
<expr> the integer to test
returns t if the integer is even, nil otherwise

(oddp <expr>) ISTHIS INTEGER ODD?
<expr> the integer to test
returns tif the integer is odd, nil otherwise

(subsetp <list1> <list2> & key :test :test-not :key) ISSET A SUBSET?
<lig1> thefirst list
<lig2> the second ligt
‘test test function (defaultsto eq)
‘test-not test function (sense inverted)
‘key function to apply to test function arguments (defaults to identity)
returns tif every dement of thefirgt list isin the second list, nil otherwise

(eq <exprl> <expr2>) ARE THE EXPRESSIONS EQUAL?

(eql <exprl> <expr2>)
(equal <exprl> <expr2>)

(equalp <exprl> <expr2>)
equalp defined in common.Isp.
<exprl> the first expression
<expr2> the second expression
returns tif equal, nil otherwise. Each is progressively more liberd inwhat is"equal":
eq: identical pointers -- works with characters, symbols, and arbitrarily small
integers

egl: works with al numbers, if same type (see also = on page 86)

equal: lists and strings

equalp: case insenditive characters (and strings), numbers of differing types,
arrays (which can be equalp to string containing same elements)

XLISP-PLUS3.0 PREDICATE FUNCTIONS Page 97



(typep <expr> <type>) ISTHIS A SPECIFIED TYPE?

<expr> the expression to test
<type> the type specifier. Symbols can either be one of those listed under type-of (on
page 116) or one of:
ATOM any atom
NULL NIL
LIST matches NIL or any cons cdll
STREAM any stream
NUMBER any numeric type
REAL flonum or rational number

INTEGER fixnum or bignum

RATIONAL fixnum or ratio

STRUCT any structure (except hash-table)

FUNCTION any function, as defined by functionp (page 92)

The specifier can adso be aform (which can be nested). All form elements are
quoted. Valid form CARs:

or any of the cdr type specifiers must be true

and all of the cdr type specifiers must be true

not the single cdr type specifier must be false

satisfies the result of applying the cdr predicate function to <expr>

member <expr> must be egl to one of the cdr values

object <expr> must be an object, of class specified by the single cdr
value. The cdr value can be a symbol which must evaluate to
aclass.

Note: everything is of type T, and nothing is of type NIL

returns tif <expr> isof type <type>, nil otherwise

Page 98 PREDICATE FUNCTIONS XLISP-PLUS3.0



CONTROL CONSTRUCTS

(cond <pair>...) EVALUATE CONDITIONALLY
fsubr.
<pair> pair consisting of:
(<pred> <expr>...)
where
<pred> is a predicate expression
<expr> evaluated if the predicate is not nil
returns the value of the first expression whose predicate is not nil
(and <expr>...) THE LOGICAL AND OF A LIST OF EXPRESSIONS
fsubr.
<expr> the expressions to be ANDed
returns nil if any expression evaluates to nil, otherwise the value of the last expression

(evaluation of expressions stops after the first expression that evaluates to nil)

(or <expr>...) THE LOGICAL OR OF A LIST OF EXPRESSIONS
fsubr.
<expr> the expressions to be ORed
returns nil if al expressons evauate to nil, otherwise the vaue of the first non-nil

expression (evaluation of expressions stops after the first expression that does
not evauate to nil)

(if <texpr> <exprl> [<expr2>]) EVALUATE EXPRESSIONS CONDITIONALLY
fsubr.
<texpr> the test expression
<exprl> the expression to be evaluated if texpr is non-nil
<expr2> the expression to be evaluated if texpr isnil
returns the value of the selected expression
(when <texpr> <expr>...) EVALUATE ONLY WHEN A CONDITION ISTRUE
fsubr.
<texpr> the test expression
<expr> the expression(s) to be evaluated if texpr is non-nil
returns the value of the last expression or nil
(unless <texpr> <expr>...) EVALUATE ONLY WHEN A CONDITION ISFALSE
fsubr.
<texpr> the test expression
<expr> the expression(s) to be evaluated if texpr is nil
returns the value of the last expression or nil

XLISP-PLUS 3.0 CONTROL CONSTRUCTS Page 99



(case <expr> <case>...[(t <expr>)]) SELECT BY CASE

fsubr.
<expr> the selection expression
<case> pair consisting of:
(<value> <expr>...)
where:
<vaue> isasingle expression or alist of expressions (unevaluated)
<expr> are expressions to execute if the case matches
(t <expr>) default case (no previous matching)
returns the value of the last expression of the matching case
(typecase <expr> <case>...[(t <expr>)]) SELECT BY TYPE
Defined as macro in common2.Isp.
<expr> the selection expression
<case> pair consisting of:
(<type> <expr>...)
where:
<type> type specifier asin function TY PEP (page 94)
<expr> are expressions to execute if the case matches
(t <expr>) default case (no previous matching)
returns the value of the last expression of the matching case
(let (<binding>...) <expr>...) CREATE LOCAL BINDINGS
(let* (<binding>...) <expr>...) LET WITH SEQUENTIAL BINDING
fsubr.
<binding> the variable bindings each of which is either:
1 asymbol (whichisinitidized to nil)
2 a list whose car is a symbol and whose cadr is an
initialization expresson
<expr> the expressions to be evaluated
returns the value of the last expression
(flet (<binding>...) <expr>...) CREATE LOCAL FUNCTIONS
(labels (<binding>...) <expr>...) FLET WITH RECURSIVE FUNCTIONS
(macrolet (<binding>...) <expr>...) CREATE LOCAL MACROS
fsubr.
<binding> the function bindings each of which is:
(<sym> <fargs> <expr>...)
where:
<sym> the function/macro name
<fargs> formal argument list (lambda list)
<expr> expressions congtituting the body of the function/macro
<expr> the expressions to be evaluated
returns the value of the last expression

Page 100 CONTROL CONSTRUCTS XLISP-PLUS 3.0



(catch <sym> <expr>...) EVALUATE EXPRESSIONS AND CATCH THROWS

fsubr.
<sym> the catch tag
<expr> expressions to evaluate
returns the value of the last expression or the throw expression
(throw <sym> [<expr>]) THROW TO A CATCH
fsubr.
<sym> the catch tag
<expr> the value for the catch to return (default is nil)
returns never returns
(unwind-protect <expr> <cexpr>...) PROTECT EVALUATION OF AN EXPRESSION

Note: unwind-protect guarantees to execute the cleanup expressions even if a non-loca exit
terminates the evaluation of the protected expression

fsubr.

<expr> the expression to protect
<cexpr> the cleanup expressions
returns the value of the expression

XLISP-PLUS 3.0 CONTROL CONSTRUCTS Page 101



LOOPING CONSTRUCTS

(loop <expr>...) BASIC LOOPING FORM
fsubr.
<expr> the body of the loop
returns never returns (must use non-local exit, such as RETURN)

(do (<binding>...) (<texpr> <rexpr>...) <expr>...) GENERAL LOOPING FORM

(do* (<binding>...) (<texpr> <rexpr>...) <expr>...)
fsubr. do binds simultaneoudy, do* binds sequentialy

<binding> the variable bindings each of which is either:
1 asymbol (which isinitidized to nil)
2 alist of the form: (<sym> <init> [<step>])
where:

<sym> isthe symbal to bind
<init>  theinitia value of the symbol
<step> astep expression

<texpr> the termination test expression
<rexpr> result expressions (default is nil)
<expr> the body of the loop (treated like an implicit prog)
returns the value of the last result expression
(dolist (<sym> <expr> [<rexpr>]) <expr>...) LOOP THROUGH A LIST
fsubr.
<sym> the symbal to bind to each list element
<expr> the list expression
<rexpr> the result expression (default is nil)
<expr> the body of the loop (treated like an implicit prog)
returns the result expression
(dotimes (<sym> <expr> [<rexpr>]) <expr>...) LOOP FROM ZERO TO N-1
fsubr.
<sym> the symbol to bind to each value from O to n-1
<expr> the number of times to loop (a fixnum)
<rexpr> the result expression (default is nil)
<expr> the body of the loop (treated like an implicit prog)
returns the result expression

Page 102 LOOPING CONSTRUCTS XLISP-PLUS 3.0



THE PROGRAM FEATURE

(prog (<binding>...) <expr>...) THE PROGRAM FEATURE
(prog* (<binding>...) <expr>...) PROG WITH SEQUENTIAL BINDING
fsubr -- equivaent to (let () (block nil (tagbody ...)))
<binding> the variable bindings each of which is either:
1 asymbol (whichisinitidized to nil)
2) a list whose car is a symbol and whose cadr is an
initiglization expresson
<expr> expressions to evaluate or tags (symbols)
returns nil or the argument passed to the return function
(block <name> <expr>...) NAMED BLOCK
fsubr.
<name> the block name (quoted symbol)
<expr> the block body
returns the value of the last expression
(return [<expr>]) CAUSE A PROG CONSTRUCT TO RETURN A VALUE
fsubr.
<expr> the value (default is nil)
returns never returns
(return-from <name> [<vdue>]) RETURN FROM A NAMED BLOCK OR FUNCTION

fsubr. In traditional XLISP, the names are dynamically scoped. A compilation option (default) uses
lexica scoping like Common Lisp.

<name> the block or function name (quoted symbol). If name is nil, use function
RETURN.
<vaue> the value to return (default is nil)
returns never returns
(tagbody <expr>...) BLOCK WITH LABELS
fsubr.
<expr> expression(s) to evauate or tags (symbols)
returns nil
(go <sym>) GO TO A TAG WITHIN A TAGBODY

fsubr. In traditional XLISP, tags are dynamicaly scoped. A compilation option (default) uses
lexica scoping like Common Lisp.

<sym> the tag (quoted)
returns never returns

XLISP-PLUS3.0 THE PROGRAM FEATURE Page 103



(progv <dist> <vligt> <expr>...) DYNAMICALLY BIND SYMBOLS

fsubr.
<dist> list of symbols (evauated)
<vlist> list of vaues to bind to the symbols (eval uated)
<expr> expression(s) to evaluate
returns the value of the last expression
(progl <exprl> <expr>...) EXECUTE EXPRESSIONS SEQUENTIALLY
fsubr.
<exprl> the first expression to evaluate
<expr> the remaining expressions to evaluate
returns the value of the first expression
(prog2 <exprl> <expr2> <expr>...) EXECUTE EXPRESSIONS SEQUENTIALLY
fsubr.
<exprl> the first expression to evaluate
<expr2> the second expression to evauate
<expr> the remaining expressions to evaluate
returns the value of the second expression
(progn <expr>...) EXECUTE EXPRESSIONS SEQUENTIALLY
fsubr.
<expr> the expressions to evaluate
returns the value of the last expression (or nil)

Page 104 THE PROGRAM FEATURE XLISP-PLUS3.0



INPUT/OUTPUT FUNCTIONS

Note that when printing objects, printing is accomplished by sending the message :prinl to the object.

(read [<stream> [<eofp> [<eof> [<rflag>]]]]) READ AN EXPRESSION
Note: there has been an incompatible change in arguments from prior versions.
<stream> the input stream (default, or nil, is * standard-input*, t is *terminal-io*)
<eofp> When t, signa an error on end of file, when nil return <eof> (default ist)
<eof> the value to return on end of file (default is nil)
<rflag> recursive read flag. The value isignored
returns the expression read

(set-macro-character <ch> <fcn>[t]) MODIFY READ TABLE
Defined in initIsp
<ch> character to define
<fcn> function to bind to character (see page 33)
returns t if TMACRO rather than NMACRO

(get-macro-character <ch>) EXAMINE READ TABLE
Defined ininit.lsp.
<ch> character
returns function bound to character

(print <expr> [<stream>]) PRINT AN EXPRESSION ON A NEW LINE
The expression is printed using prinl, then current line is terminated. Note: this is backwards from
Common Lisp.
<expr> the expression to be printed
<stream> the output stream (default, or nil, is * standard-output*, t is *terminal-io*)
returns the expression

(prinl <expr> [<stream>]) PRINT AN EXPRESSION

symbols, cons cells (without circularities), arrays, strings, numbers, and characters are printed in a
format generally acceptable to the read function. Printing format can be affected by the global
formatting variables. *print-level* and *print-length* for lists and arrays, *print-base* for rationals,
*integer-format*  for fixnums, *float-format* for flonums, *reio-format* for ratios, and
*print-case* and * readtable-case* for symbols.

<expr> the expression to be printed
<stream> the output stream (default, or nil, is* standard-output*, t is *terminakic*)
returns the expression

(princ <expr> [<stream>]) PRINT AN EXPRESSION WITHOUT QUOTING

Like PRIN1 except symbols (including uninterned), strings, and characters are printed without
using any quoting mechanisms.

<expr> the expressions to be printed
<stream> the output stream (default, or nil, is * standard-output*, t is *terminal-io*)
returns the expression

XLISP-PLUS3.0 INPUT/OUTPUT FUNCTIONS Page 105



(pprint <expr> [<stream>]) PRETTY PRINT AN EXPRESSION
Uses prinl for printing.

<expr> the expressions to be printed
<stream> the output stream (default, or nil, is * standard-output*, t is *terminal-io*)
returns the expression

(terpri [<stream>]) TERMINATE THE CURRENT PRINT LINE
<stream> the output stream (default, or nil, is * standard-output*, t is *terminak-io*)
returns nil

(fresh-line [<stream>]) START A NEW LINE
<stream> the output stream (default, or nil, is * standard-output*, t is *terminal-io*)
returns tif anew list was started, nil if already at the start of aline

(flatsize <expr>) LENGTH OF PRINTED REPRESENTATION USING PRIN1
<expr> the expression
returns the length

(flatc <expr>) LENGTH OF PRINTED REPRESENTATION USING PRINC
<expr> the expression
returns the length

(y-or-n-p [<fmt> [<arg>...]]) ASK A YES OR NO QUESTION

(yes-or-no-p [<fmt> [<arg>...]])
Defined in common.lsp. Uses *terminalio* stream for interaction. y-or-n-p strives for a single
character answer, using get-key if defined.

<fmt> optional format string for question (see page 103)
<arg> arguments, if any, for format string
returns t for yes, nil for no
(prinl-to-string <expr>) PRINT TO A STRING

(princ-to-string <expr>)
Defined in common2.1sp. Uses prinl or princ conventions, respectively.

<expr> the expression to print
returns the string containing the "printed” expression
(read-from-string <str> [<eofp> [<eof>]] &key :start :end) READ AN EXPRESSION
Defined in common2.1sp.
<str> the input string
<eofp> When t, signa an error on end of string, when nil return <eof> (default ist)
<eof> the value to return on end of string (default is nil)
‘Start sarting index of <str> (default is 0)
.end ending index of <str>, (default, or nil, isend of string)
returns two values: the expression read and index of character after last one used

Page 106 INPUT/OUTPUT FUNCTIONS XLISP-PLUS3.0



THE FORMAT FUNCTION

(format <stream> <fmt> [<arg>...]) DO FORMATTED OUTPUT
<stream> the output stream (t is * standard-output*)
<fmt> the format string
<arg> the format arguments
returns output string if <stream> isnil, nil otherwise

The format string can contain characters that should be copied directly to the output and formatting
directives. The formatting directives are;

~? use next argument as recursive format string
~(~) process format string with case conversion
~{ ~} process format string repetitively

~* skip arguments

~% start anew line

~& gart anew lineif not on anew line

~\n ignore return and following whitespace

~| start a new page
~~ print atilde character

~A or ~a print next argument using princ

~Bor~b print next argument as binary integer (bignum extension)
~Dor~d print next argument as decimal integer

~Eor~e print next argument in exponentia form

~F or ~f print next argument in fixed point form

~Gor~g print next argument using either ~E or ~F depending on magnitude
~Oor~o print next argument as octal integer

~Ror ~r print next number in any radix (bignum extension)
~Sor~s print next argument using prinl

~T or ~t go to a specified column

~X or ~X print next argument as hexadecimal integer

~~ - process formet string conditionaly

The format directives can contain optional prefix and optiona colon (:) or a-sign (@) modifiers between
the tilde and directive character. Prefix characters are unsigned integers, the character '# which
represents the remaining number of arguments, the character 'v' to indicate the number is taken from the
next argument, or a single quote (*) followed by a single character for those parameters that should be a
single character.

For ~A and ~Sthe full formis:
~mincoal ,colinc,minpad,padchar: @A (or 9

If :is given, NIL will print as "()" rather than "NIL". The string is padded on the right (or l€ft, if @ is
given) with at least "minpad” copies of the "padchar”. Padding characters are then inserted "colinc"
characters at a time until the total width is a least "mincol”. The defaults are O for mincol and minpad, 1
for colinc, and #\space for padchar. For example:

~15,2,. @A

XLISP-PLUS3.0 THE FORMAT FUNCTION Page 107



The output is padded on the left with at least 2 periods until the output is at least 15 characters wide.
For ~D, ~B, ~O, and ~X the full formis ("D" shown):
~mincol ,padchar@D

If the data to print is not an integer, then the format "~mincol A" is used. If "mincol" is specified then the
number is padded on the I€eft to be at least that many characters long using "padchar”. "padchar” defaults
to #\space. If @ is used and the value is positive, then aleading plus sign is printed before the first digit.

For ~R, the full form is;
~radix,mincol ,padchar @R

The radix must be in the range 2 through 36. Other arguments are asin ~D, above. Unlike Common Lisp,
English text and Roman numeral output is not supported.

For ~E ~F and ~G the full formis.
~mincol ,round,padchar @E (or For G)

(This implementation is not Common Lisp compatible)) If the argument is not a real number (FIXNUM,
RATIO, or FLONUM), then the format "~mincol,padcharD" is used. The number is printed using the C
language g, f, or g formats. If the number could potentially take more than 100 digits to print, then F format
is forced to E format, dthough some C libraries will do this a a lower number of digits. If "round" is
specified, than that is the number of digits to the right of the decima point that will be printed, otherwise
six digits (or whatever is necessary in G format) are printed. In G format, trailing zeroes are deleted and
exponential notation is used if the exponent of the number is greater than the precision or less than -4. If
the @ modifier is used, a leading plus sign is printed before positive values. If "mincol” is specified, the
number is padded on the left to be at least "mincol” characters long using "padchar”. "padchar” defaults to
#\space.

For ~%, ~|, and ~~, the full form is ~n%, ~n|, or ~n~. "n" copies (default is 1) of the character are outpui.

For ~&, the full form is ~n&. ~0& does nothing. Otherwise enough new line characters are emitted to
move down to the "n"th new line (default is 1).

For ~?, the next argument is taken as a format string, upon completion execution resumes in the current
format string. The argument after is taken as the list of arguments used for the new format string unless
the @ modifier is used, in which case the current argument list is used.

For ~(, the full form is ~(string~). The string is processed as a format string, however case conversion is
performed on the output. If no modifiers are used, the string is converted to lowercase. If the colon
modifier is used aone then all words are cepitaized. If the @ modifier is used done then the first
character is converted to upper case and al remaining to lowercase. If both modifiers are used, al
characters are converted to uppercase.

For ~{, the full form is ~n{ string~}. Repeatedly processes string as a format string, or if the string is zero
length, takes the next argument as the string. Iteration stops when processing has occurred n times or no
arguments remain. If the colon modifier is used on the ~} command, and n is non-zero then the string will
be processed at least once. If o modifiers are used on ~{, then the arguments are taken from the next
argument (like in ~?). If the colon modifier is used, the arguments are taken from the next argument which
must be a list of sublists -- the sublists are used in turn to provide arguments on each iteration. In either
case, the @ modifier will cause the current argument list to be used rather than asingle list argument.

Page 108 THE FORMAT FUNCTION XLISP-PLUS3.0



For ~[, there are three formats. The first form is ~n[clause0~;clausel...~;clausen~]. Only one clause
string is used, depending on the value of n. When n is absent, its value is taken from the argument list (as
though 'v' had been used). The last clause is treated as an "otherwise”" clause if a colon modifier is used in
its leading ~; command. The second form is ~:[clausenil~;clauset~]. The next argument is examined (and
aso consumed), and if nil clausenil is used, otherwise clauset is used. The third form is ~@[string~]. If the
next argument is non-nil, then it is not used up and the format string is used, otherwise the argument is
used up and the string is not used.

For ~*, the full form is ~n*. The count, n, defaults to 1 and is the number of arguments to skip. If the colon
modifier is used, n is negated and skipping is backwards. The @ modifier causes n to be an absolute
argument position (with default of 0), where the first argument is argument 0. Attempts to position before
the first argument will position a the first argument, while attempts to position after the last argument
signals an eror.

For ~T, the full formis
~count,tabwidth@T

The cursor is moved to column "count” (default is 1). If the cursor is initially at count or beyond, then the
cursor is moved forward to the next position that is a multiple of "tabwidth" (default is 1) columns beyond
count. When the @ modifier is used, then positioning is relative. "count™ spaces are printed, then additional
spaces are printed to make the column number be a multiple of "tabwidth". Note that column calculations
will beincorrect if ASCII tab characters or ANSI cursor positioning sequences are used.

For ~\n, if the colon modifier is used, then the format directive is ignored (allowing embedded returns in the
source for enhanced readability). If the at-sign modifier is used, then a carriage return is emitted, and
following whitespace is ignored.

XLISP-PLUS3.0 THE FORMAT FUNCTION Page 109



FILE I1/O FUNCTIONS

Note that initidly, when starting XLISP-PLUS, there are six system stream symbols which are associated
with three streams. * TERMINAL-IO* is a speciad stream that is bound to the keyboard and display, and
alows for interactive editing. * STANDARD-INPUT* is bound to standard input or to * TERMINAL-IO*
if not redirected. *STANDARD-OUTPUT* is bound to standard output or to * TERMINAL-IO* if not
redirected. *ERROR-OUTPUT* (error message output), * TRACE-OUTPUT* (for TRACE and TIME
functions), and *DEBUG-IO* (bresk loop 1/0, and messages) are al bound to *TERMINAL-1O*.
Standard input and output can be redirected on most systems.

File streams are printed using the #< format that cannot be read by the reader. Console, standard input,
standard output, and closed streams are explicitly indicated. Other file streams will typicaly indicate the
name of the attached file.

When the transcript is active (either -t on the command line or the DRIBBLE function), all characters that
would be sent to the display via* TERMINAL-1O* are aso placed in the transcript file.

*TERMINAL-IO* should not be changed. Any other system streams that are changed by an application
should be restored to their origina values.

(read-char [<stream>[<eofp>[<eof>]]]) READ A CHARACTER FROM A STREAM
Note: New eof arguments are incompatible with older XLISP versions.
<stream> the input stream (default, or nil, is *standard-input*, t is * terminakio*)
<eofp> When t, signal an error on end of file, when nil return <eof> (default ist)
<eof> the value to return on end of file (default is nil)
returns the character or <eof> at end of file

(peek-char [<flag> [<stream> [<eofp> [<eof>]]]])
PEEK AT THE NEXT CHARACTER

<flag> flag for skipping white space (default is nil)
<stream> the input stream (default, or nil, is *standard-input*, t is *terminakio*)
<eofp> When t, signd an error on end of file, when nil return <eof> (default ist)
<eof> the value to return on end of file (default is nil)
returns the character or <eof> at end of file

(write-char <ch> [<stream>]) WRITE A CHARACTER TO A STREAM
<ch> the character to write
<stream> the output stream (default, or nil, is * standard-output*, t is *terminak-io*)
returns the character

(read-line [<stream>[<eof p>[<eof>]]]) READ A LINE FROM A STREAM
Note: New eof arguments are incompatible with older XLISP versions.
<stream> the input stream (default, or nil, is *standard-input*, t is *terminakio*)
<eofp> When t, Signal an error on end of file, when nil return <eof> (default ist)
<eof> the value to return on end of file (default is nil)
returns the string excluding the #Anewline, or <eof> at end of file

Page 110 FILE I/O FUNCTIONS XLISP-PLUS3.0



(open <fname> & key :direction :element-type :if-exists :if-does-not-exist) OPEN A FILE STREAM
Note: A maximum of ten files can be open a any one time, including any files open via the
LOAD, DRIBBLE, SAVE and RESTORE commands. The open command may force a garbage
collection to reclaim file dots used by unbound file streams.
<fname> the file name string, symbol, or file stream created via OPEN. In the last case,

the name is used to open a second stream on the same file -- this can cause
problems if one or more streams is used for writing.

:direction Read and write permission for stream (default is :input)
‘input Open file for read operations only.
:prob Open file for reading, then close it (use to test for file existence)
:output Open file for write operations only.
io Like :output, but reading aso alowed.

:element-type FIXNUM or CHARACTER (default is CHARACTER), as returned by
type-of function (on page 116), or UNSIGNED-BYTE, SIGNED-BYTE,
(UNSIGNED-BYTE <size>), or (SIGNED-BYTE <size>) with the bignum
extenson. CHARACTER (the default) is for text files, the other types are for
binary files and can only be used with READ-BYTE and WRITE-BYTE.
FIXNUM is a vestige of older XLISP-PLUS releases and is identical to
(UNSIGNED-BYTE 8). If no size is given, then size defaults to 8. Size must
be amultiple of 8.

if-exists action to teke if file exists. Argument ignored for :input (file is postioned at
sart) or :probe (fileis closed)
.error give error message
‘rename rename file to generated backup name, then open a new file of the origina
name. Thisis the default action
‘new-version same as :rename
-overwrite fileis positioned to start, original data intact
:gppend fileis positioned to end
‘supersede delete origina file and open new file of the same name
‘rename-and-delete  same as :supersede
nil closefile and return nil
if-does-not-exist  action to take if file does not exist.
-error give error message (default for :input, or :overwrite or :append)
.create create a new file (default for :output or :io when not :overwrite or
:gppend)
nil return nil (default for :probe)
returns afile stream, or sometimes nil
(close <stream>) CLOSE A FILE STREAM

The stream becomes a "closed stream.” Note: unbound file streams are closed automatically
during a garbage collection.

<stream> the stream, which may be a string stream

returns t if stream closed, nil if terminal (cannot be closed) or aready closed

XLISP-PLUS3.0 FILE I/OFUNCTIONS Page 111



(probe-file <fname>) CHECK FOR EXISTENCE OF A FILE
Defined in common2.1sp.

<fname> file name string or symbol
returns tif file exigts, esenil
(delete-file <fname>) DELETE A FILE
<fname> file name string, symbol or a stream opened with OPEN
returns tif file does not exist or is deleted. If <fname> is a stream, the stream is closed

before the file is deleted. An error occurs if the file cannot be deleted.

(truename <fname>) OBTAIN THE FILE PATH NAME
<fname> file name string, symbol, or a stream opened with OPEN
returns string representing the true file name (absolute path to file)
(with-opent-file (<var> <fname> [<karg>...]) [<expr>...]) EVALUATE USING A FILE
(with-open-stream (<var> <stream>) [<expr>...]) EVALUATE USING AN OPENED STREAM
Defined as macros in common.lsp and common2.1sp, respectively. Stream will always be closed
upon completion.
<var> symbol name to bind stream to while evaluating expressions (quoted)
<fname> file name string or symbol
<stream> afileor string stream
<karg> keyword arguments for the implicit open command
<expr> expressions to evauate while file is open (implicit progn)
returns vaue of last <expr>
(read-byte <stream>[<eofp>[<eof>]]) READ A BYTE FROM A STREAM

Note: New eof arguments are incompatible with older XLISP versions. Stream argument used to
be optiona. Number of system bytes read depend on :element-type specified in the open

command.
<stream> the input stream
<eofp> When t, signa an error on end of file, when nil return <eof> (default ist)
<eof> the value to return on end of file (default is nil)
returns the byte (integer) or <eof> at end of file
(write-byte <byte> <stream>) WRITEA BYTETO A STREAM

Note: Stream argument used to be optional. Number of system bytes written depends on
:element-type specified in open command. No checks are made for overflow, however negative
values cannot be written to unsigned-byte streams.

<byte> the byte to write (integer)
<stream> the output stream
returns the byte (integer)
(file-length <stream>) GET LENGTH OF FILE

For a CHARACTER file, the length reported may be larger than the number of characters read
or written because of CR conversion.

<stream> the file stream (should be disk file)

returns length of file, or nil if cannot be determined

Page 112 FILE I/O FUNCTIONS XLISP-PLUS3.0



(file-position <stream> [<expr>]) GET OR SET FILE POSITION
For a CHARACTER file, the file position may not be the same as the number of characters read
or written because of CR conversion. It will be correct when using file-postion to postion afile at
alocation earlier reported by file-pogtion.

<stream> the file stream (should be a disk file)

<expr> desired file pogtion, if setting position. Can aso be :start for start of file or :end
for end of file.

returns if setting position, and successful, then t; if getting position and successful then

the position; otherwise nil

XLISP-PLUS3.0 FILE I/OFUNCTIONS Page 113



STRING STREAM FUNCTIONS

These functions operate on unnamed streams. An unnamed output stream collects characters sent to it
when it is used as the destination of any output function. The functions 'get-output-stream' string and list
return a string or list of the characters.

An unnamed input stream is set-up with the 'make-string-input-stream’ function and returns each
character of the string when it is used as the source of any input function.

Note that there is no difference between unnamed input and output streams. Unnamed input streams may
be written to by output functions, in which case the characters are appended to the tail end of the stream.
Unnamed output streams may also be (destructively) read by any input function as well as the
get-output-stream functions.

(make-string-input-stream <str> [<start> [<end>]]) CONVERT STRING TO STREAM
<str> the string
<dtart> the starting offset
<end> the ending offset + 1 or nil for end of string
returns an unnamed stream that reads from the string

(make-tring-output-stream) ACCUMULATE OUTPUT IN A STREAM
returns an unnamed output stream

(get-output-stream-string <stream>) CONVERT STREAM TO STRING
The output stream is emptied by this function
<stream> the output stream
returns the output so far as a string

(get-output-stream+-list <stream>) CONVERT STREAM TO LIST
The output stream is emptied by this function
<stream> the output stream
returns the output so far asalist

(with-input-from-string (<var> <str> & key :start :end :index) [<expr>...])
EVALUATE READING FROM A STRING
Defined as macro in common.|sp.

<var> symbol that stream is bound to during execution of expressions (quoted)

<str> the string

‘Start starting offset into string (default is 0)

:end ending offset + 1 (default, or nil, is end of string)

;index setf place form which gets fina index into string after last expression is
executed (quoted)

<expr> expressions to evaluate (implicit progn)

returns the value of the last <expr>

Page 114 STRING STREAM FUNCTIONS XLISP-PLUS3.0



(with-output-to-string (<var>) [<expr>...]) EVALUATE WRITING TO A STRING
Defined as macro in common.|sp.

<var> symbol that stream is bound to during execution of expressions (quoted)
<expr> expressions to evaluate (implicit progn)
returns contents of stream, as a string

XLISP-PLUS3.0 STRING STREAM FUNCTIONS Page 115



DEBUGGING AND ERROR HANDLING FUNCTIONS

Apart from these debugging functions, there are some extra utilities distributed with this package. See the
section starting on page 120.

(trace [<sym>...]) ADD A FUNCTION TO THE TRACE LIST
fsubr.
<sym> the function(s) to add (quoted)
returns thetrace list

(untrace [<sym>...]) REMOVE A FUNCTION FROM THE TRACE LIST
fsubr. If no functions given, al functions are removed from the trace list.
<sym> the function(s) to remove (quoted)
returns thetrace list

(error <emsg> {<arg>}) SIGNAL A NON-CORRECTABLE ERROR
Note: the definition of this function has changed from 2.1e and earlier so to match Common Lisp.
<emsg> the error message string, which is processed by FORMAT
<arg> optional argument{s} for FORMAT
returns never returns

(cerror <cmsg> <emsg> {<arg>}) SIGNAL A CORRECTABLE ERROR
Note: the definition of this function has changed from 2.1e and earlier so to match Common Lisp.
<cmsg> the continue message string, which is processed by FORMAT
<emsg> the error message string, which is processed by FORMAT
<arg> optiona argument(s) for both FORMATSs (arguments are usable twice)
returns nil when continued from the break loop

(break <bmsg> { <arg>}) ENTER A BREAK LOOP
Note: the definition of this function has changed from 2.1e and earlier so to match Common Lisp.
<bmsg> the break message string, which is processed by FORMAT
<arg> optiona argument(s) for FORMAT
returns nil when continued from the break loop

(clean-up) CLEAN-UP AFTER AN ERROR
returns never returns

(top-leve) CLEAN-UP AFTER AN ERROR AND RETURN TO THE TOP LEVEL
Runs the function in variable *top-level-loop* (usudly TOP-LEVEL-LOOP)
returns never returns

(continue) CONTINUE FROM A CORRECTABLE ERROR
returns never returns

Page 116 DEBUGGING AND ERROR HANDLING FUNCTIONS XLISP-PLUS3.0



(errset <expr> [<pflag>]) TRAP ERRORS
fsubr.
<expr> the expression to execute
<pflag> flag to control printing of the error message (default ist)
returns the value of the last expression consed with nil or nil on error
(baktrace [<n>]) PRINT N LEVELS OF TRACE BACK INFORMATION
<n> the number of levels (defaultsto al levels)
returns nil
(evalhook <expr> <ehook> <ahook> [<env>]) EVALUATE WITH HOOKS
<expr> the expression to evaluate. <ehook> is not used at the top level.
<ehook> the value for * evalhook*
<ahook> the value for * applyhook*
<env> the environment (default is nil). The format is a dotted pair of value (car) and
function (cdr) binding lists. Each binding ligt isalist of leve binding alists, with
the innermost alist first. The level binding alist associates the bound symbol
with its vaue.
returns the result of evaluating the expression
(applyhook <fun> <arglist> <ehook> <ahook>) APPLY WITH HOOKS
<fun> The function closure. <ahook> is not used for this function application.
<arglist> Thelist of arguments
<ehook> the value for * evalhook*
<ahook> the value for * applyhook*
returns the result of gpplying <fun> to <arglist>
(debug) ENABLE DEBUG BREAKS
(nodebug) DISABLE DEBUG BREAKS
Defined in init.Isp
returns debug returnst
nodebug returns nil

(ecase <expr> <case>...)
(ccase <expr> <case>...)

SELECT BY CASE

Defined as macros in common2.Isp. ECASE signals a non-continuable error if there are no case
matches, while CCASE signals a continuable error and allows changing the value of <expr>.

<expr>
<case>

returns

the selection expression
pair conssting of:
(<value> <expr>...)

where:
<value> isasingle expression or alist of expressions (unevaluated)
<expr> are expressions to execute if the case matches

the value of the last expression of the matching case

XLISP-PLUS 3.0

DEBUGGING AND ERROR HANDLING FUNCTIONS Page 117



(etypecase <expr> <case>...) SELECT BY TYPE
(ctypecase <expr> <case>...)
Defined as macros in common2.1sp. ETY PECASE signals a non-continuable error if there are no
case matches, while CTYPECASE signals a continuable error and alows changing the value of

<expr>.
<expr> the selection expression
<case> pair consisting of:
(<type> <expr>...)
where:
<type> type specifier asin function TY PEP (page 94)
<expr> are expressions to execute if the case matches
returns the value of the last expression of the matching case
(check-type <place> <type> [<string>]) VERIFY DATA TYPE

Defined as macro in common2.lsp. If vaue stored at <place> is not of type <type> then a
continuable error is signaled which alows changing the value at <place>.

<place> avdid field specifier (generalized variable)
<type> avalid type specifier asin function TY PEP (page 94)
<gring> string to print as the error message
returns nil
(assert <test> [([<place>...]) [<string> [<args>...]]]) MAKE AN ASSERTION

Defined in common2.Isp. If value of <test> is nil then a continuable error is signaled which alows
changing the place values.

<test>
<place>
<gring>
<args>
returns

(the <type> <form>)

assertion test

zero or more valid field specifiers

error message printed usng FORMAT (evaluated only if assertion fails)
arguments for FORMAT (evaluated only if assertion fails)

nil

DECLARE TYPE OF A FORM

Defined as macro in common.lsp, and provided to assst in porting Common Lisp applications to
XLISP-PLUS. If type of <form> is not <type> then an error issignaled.

<type>
<form>
returns

the declared type (quoted)
the form to evaluate
the value of form

Page 118

DEBUGGING AND ERROR HANDLING FUNCTIONS XLISP-PLUS3.0



SYSTEM FUNCTIONS

(load <fname> & key :verbose :print) LOAD A SOURCE FILE
An implicit ERRSET exists in this function so that if eror occurs during loading, and
*breskenable* is nil, then the error message will be printed and nil will be returned. The OS
environmental variable XLPATH is used as a search path for filesin this function. If the filename
does not contain path separators (/' for UNIX, and either /' or '\' for MS-DOS) and XLPATH is
defined, then each pathname in XLPATH istried in turn until a matching fileis found. If no fileis
found, then one last attempt is made in the current directory. The pathnames are separated by
either a space or semicolon, and atrailing path separator character is optional.

<fname> the filename string, symbol, or afile stream created with OPEN. The extension
"I§0" is assumed.
:verbose the verbose flag (default ist)
Jprint the print flag (default is nil)
returns t if successful, else nil
(restore <fname>) RESTORE WORKSPACE FROM A FILE

The OS environmenta variable XLPATH is used as a search path for files in this function. See
the note under function "load", above. The standard system streams are restored to the defaults as
of when XLISP-PLUS was started. Files streams are restored in the same mode they were
created, if possible, and are positioned where they were at the time of the save. If the files have
been atered or moved since the time of the save, the restore will not be completely successful.
Memory allocation will not be the same as the current settings of ALLOC are used. Execution
proceeds at the top-level read-eval-print loop. The state of the transcript logging is not affected by

this function.
<fname> the filename string, symbol, or afile stream created with OPEN. The extension
"wks" is assumed.
returns nil on failure, otherwise never returns
(save <fname>) SAVE WORKSPACE TO A FILE

Y ou cannot save from within aload. Not al of the state may be saved -- see "restore”, above. By
saving a workspace with the name "xlisp", that workspace will be loaded automatically when you
invoke XLISP-PLUS.

<fname> the filename string, symbol, or afile stream created with OPEN. The extension
"WKs' is assumed.
returns t if workspace was written, nil otherwise
(savefun <fen>) SAVE FUNCTION TO A FILE
Defined in init.Isp
<fcn> function name (savesit to file of same name, with extension ".I5p")
returns tif successful
(dribble [<fname>]) CREATE A FILEWITH A TRANSCRIPT OF A SESSION
<fname> file name string, symbol, or file stream created with OPEN. If missing, close
current transcript
returns tif the transcript is opened, nil if it is closed

XLISP-PLUS3.0 SYSTEM FUNCTIONS Page 119



(gc) FORCE GARBAGE COLLECTION

returns nil

(expand [<num>]) EXPAND MEMORY BY ADDING SEGMENTS
<num> the (fixnum) number of segmentsto add (default is 1)
returns the (fixnum) number of segments added

(aloc <num> [<num?2> [<num3>]]) CHANGE SEGMENT SIZE
<num> the (fixnum) number of nodes to alocate
<numz2> the (fixnum) number of pointer elementsto alocate in an array segment (when

dynamic array allocation compiled). Default is no change.

<num3> the <fixnum> idedl ratio of free to used vector space (versions of XLISP using

didmem.c). Default is 1. Incresse if extensive time is spent in garbage
collection in bignum math intensive programs.
returns the old number of nodes to allocate

(room) SHOW MEMORY ALLOCATION STATISTICS

Statistics (which are sent to * STANDARD-OUTPUT*) include:
Nodes - number of nodes, free and used
Free nodes - number of free nodes
Segments - number of node segments, including those reserved for characters
and small integers.
Allocate - number of nodes to alocate in any new node segments
Tota - total memory bytes allocated for node segments, arrays, and strings
Collections - number of garbage collections
Time - time spent performing garbage collections (in seconds)

When dynamic array alocation is compiled, the following additiona statistics are printed:
Vector nodes - total vector space (pointers and string, in pointer sized units)
Vector free - free space in vector area (may be fragmented across segments)
Vector segs - number of vector segments. Increases and decreases as

needed.
Vec dlocate - number of pointer elements to alocate in any new vector
segment
Vec collect - number of garbage collections ingtigated by vector space
exhaustion
returns nil
(time <expr>) MEASURE EXECUTION TIME
fsubr.
<expr> the expression to evaluate
returns the result of the expresson. The execution time is printed to
*TRACE-OUTPUT*
(Seep <expr>) TIME DELAY
Defined in common2.1sp.
<expr> time in seconds
returns nil, after <expr> seconds delay

Page 120 SYSTEM FUNCTIONS XLISP-PLUS3.0



(get-internal-real-time) GET ELAPSED CLOCK TIME

(get-internal-run-time) GET ELAPSED EXECUTION TIME

returns integer time in system units (see interna-time-units-per-second on page 43).
meaning of absolute values is system dependent

(coerce <expr> <type>) FORCE EXPRESSION TO DESIGNATED TYPE
Sequences can be coerced into other sequences, single character strings or symbols with single
character printnames can be coerced into characters, integers can be coerced into characters or
flonums. Ratios can be coerced into flonums. Flonums can be coerced into complex.

<expr> the expression to coerce
<type> desired type, as returned by type-of (see page 116)
returns <expr> if typeis correct, or converted object
(type-of <expr>) RETURNS THE TYPE OF THE EXPRESSION

It is recommended that typep be used instead, as it is more genera. In the origina XLISP, the
value nil was returned for NIL.

<expr> the expression to return the type of
returns One of the symbals:
LIST for NIL (lists, conses return CONS)
SYMBOL for symbols
OBJECT for objects
CONS for conses
SUBR for built-in functions
FSUBR for specia forms
CLOSURE for defined functions
STRING for strings
FIXNUM for integers
BIGNUM for large integers
RATIO for ratios
FLONUM for floating point numbers
COMPLEX for complex numbers
CHARACTER for characters
FILE-STREAM for file pointers
UNNAMED-STREAM  for unnamed streams
ARRAY for arrays
HASH-TABLE for hash tables
sym for structures of type "sym"
(peek <addrs>) PEEK AT A LOCATION IN MEMORY
<addrs> the address to peek at (fixnum)
returns the value at the specified address (integer)
(poke <addrs> <value>) POKE A VALUE INTO MEMORY
<addrs> the address to poke (fixnum)
<vaue> the value to poke into the address (fixnum)
returns the value

XLISP-PLUS3.0 SYSTEM FUNCTIONS Page 121



(address-of <expr>) GET THE ADDRESS OF AN XLISP NODE

<expr> the node
returns the address of the node (fixnum)
(get-key) READ A KEYSTROKE FROM CONSOLE
OS dependent.
returns integer value of key (no echo)
(system <command>) EXECUTE A SYSTEM COMMAND

Note: OS dependent -- not always available.
<command> Command string, if O length then spawn OS shell
returns tif successful. Note: MS-DOS command.com always returns success.

(set-stack-mark <size>) SET SYSTEM STACK WARNING POINT
OS dependent -- not adways available. The system will perform a continuable error when the
amount of remaining system stack passes below this setting. The trap is reset at the top-leve. This
function is useful for debugging runaway recursive functions.
<size> Remaining stack, in bytes. Minimum value is fixed at the vaue that causes the

system stack overflow error, while the maximum value is limited to somewhat
less than the current remaining stack space. Use "0" to turn the warnings off.

returns the previous value

(top-level-loop) DEFAULT TOP LEVEL LOOP
Runs the XLISP top level read-eval-print loop, described earlier.
returns never returns

(reset-system) FLUSH INPUT BUFFERS
Used by user-implemented top level loops to flush the input buffer
returns nil

(exit) EXIT XLISP
returns never returns

Page 122 SYSTEM FUNCTIONS XLISP-PLUS3.0



(generic <expr>) CREATE A GENERIC TYPED COPY OF THE EXPRESSION
Note: added function, Tom Almy's creation for debugging XLISP.

<expr> the expression to copy
returns nil if vaueisnil and NILSYMBOL compilation option not declared, otherwise
if typeis
SYMBOL copy asan ARRAY
OBJECT copy asan ARRAY
CONS (CONS (CAR <expr>)(CDR <expr>))
CLOSURE copy asan ARRAY
STRING copy of the string
FIXNUM vaue
FLONUM vaue
RATIO vaue
CHARACTER vaue
UNNAMED-STREAM copy asa CONS
ARRAY copy of the array
COMPLEX copy asan ARRAY
HASH-TABLE copy asan ARRAY
BIGNUM copy asastring
structure copy asan ARRAY

(eval-when <condition> <body> ...) EVALUATE ONLY DURING LOAD OR EXECUTION TIME
Defined as macro in common.lsp, and provided to assist in porting Common Lisp applications to

XLISP-PLUS.

<condition> Ligt of conditions

<body> expressions which are evaluated if one of the conditions is EXECUTE or
LOAD

returns result of last body expression

The following graphic and display functions represent an extension by Tom Almy:

(cl9) CLEAR DISPLAY
Clear the display and position cursor at upper |eft corner.
returns nil

(cleal) CLEAR TO END OF LINE
Clears current line to end.
returns nil

(goto-xy [<column> <row=>]) GET OR SET CURSOR POSITION
Cursor isrepositioned if optional arguments are specified. Coordinates are clipped to actual size of
display.
<column> 0-based column (x coordinate)
<row> 0-based row (y coordinate)
returns ligt of origind column and row pogtions

XLISP-PLUS3.0 SYSTEM FUNCTIONS Page 123



(mode <ax> [<bx> <width> <height>) SET DISPLAY MODE
Standard modes require only <ax> argument. Extended modes are " Super-VGA" or "Super-EGA"
and are display card specific. Not al XLISP versions support all modes.

<ax>

<bx>
<width>
<height>
returns

(color <value>)

Graphic mode (value passed in register AX)

Common standard Modes:

0,1 - 40x25 text

2,3 - 80x25 text

45 - 320x200 4 color graphics (CGA)

6 - 640x200 monochrome graphics (CGA)

13 - 320x200 16 color graphics (EGA)

14 - 640%x200 16 color graphics (EGA)

16 - 640x350 16 color graphics (EGA)

18 - 640x480 16 color graphics (VGA)

19 - 320x200 256 color graphics (VGA)

BX vaue for some extended graphic modes

width for extended graphic modes

height for extended graphic modes

a ligt of the number of columns, number of lines (1 for CGA), maximum X
graphic coordinate (-1 for text modes), and the maximum Y graphic coordinate
(-1 for text modes), or nil if fails

SET DRAWING COLOR

<vaue> Drawing color (not checked for validity)
returns <value>
(move <x1> <y1> [<x2> <y2> ...]) ABSOLUTE MOVE

(moverd <x1> <y2> [<x2> <y2> ...])
For moverdl, dl coordinates are relative to the preceding point.

<x1><yl> Moves to point x1,y1 in anticipation of draw
<X2> <y2> Draws to points specified in additional arguments
returns t if succeeds, elsenil

(draw [<x1><yl1> ...])

(drawrel [<x1> <y1> ...])
For drawrd, al coordinates are relative to the preceding point.
<x1> <yl> Point(s) drawn to, in order
returns t if succeeds, else nil

RELATIVE MOVE

ABSOLUTE DRAW
RELATIVE DRAW

Page 124 SYSTEM FUNCTIONS

XLISP-PLUS 3.0



ADDITIONAL FUNCTIONS AND UTILITIES

STEP.LSP

This file contains a smple Ligp single-step debugger. It started as an implementation of the "hook"
example in chapter 20 of Steele's "Common Lisp". This verson was brought up on Xlisp 1.7 for the
Amiga, and then on VAXLISP.

When the package feature is compiled in, the debugger isin the TOOL S package.
Toinvoke:
(step (whatever-formwth args))
For each list (interpreted function call), the stepper prints the environment and the list, then enters a
read-eval-print loop. At this point the available commands are:

(alist)<CR> evaluate the list in the current environment, print the result, and repedt.
<CR> step into the caled function
anything_else<CR> step over the called function.

If the stepper comes to a form that is not a list it prints the form and the vaue, and continues on without
stopping.

Note that stepper commands are executed in the current environment. Since this is the case, the stepper
commands can change the current environment. For example, a SETF will change an environment
variable and thus can alter the course of execution.

Global variables - newline, *hooklevel*
Functions/macros - while step eval-hook-function step-spaces step-flush

XLISP-PLUS3.0 ADDITIONAL FUNCTIONSAND UTILITIES Page 125



STEPPER.LSP

Thisis a more powerful stepper/debugger than step.lsp. The package isin stepper.Isp
To invoke the stepper:

(step <formwi th args>)

The stepper will stop and print every form, then wait for user input. Forms are printed compressed, i.e. to
a depth and length of 3. This may be changed by assigning the desired depth and Iength values to * pdepth*
and *plen* before invoking the stepper, or from within the stepper viathe . and # commands.

For example, suppose you have the following defined:

(defun fib (n)
(if (or (= n 1) (=n 2))
1
(+ (fib (1- n)) (fib (- n 2)))))

Then(step (fib 4)) will produce the following:
0 >==> (fib 4)

1 >==> (if (or (=n1l1) (=n2))1...)
The colon is the stepper's prompt.

For alist of commands, type h. This produces the following:
St epper Conmands

n or space next form

s or <cr> step over form

f FUNCTI ON go until FUNCTION is called

b FUNCTI ON set breakpoint at FUNCTI ON

b <list> set breakpoint at each function in |ist

¢ FUNCTI ON cl ear breakpoint at FUNCTI ON

c <list> cl ear breakpoint at each function in |ist
c *all~* clear all breakpoints

g go until a breakpoint is reached

u go up; continue until enclosing formis done
w where am | ? -- backtrace

t toggle trace on/off

q quit stepper, continue execution

p pretty-print current form (unconpressed)
e print environnment

X <expr> execute expression in current environnment
r <expr> execute and return expression

# nn set print depth to nn

. nn set print length to nn

h print this summary

Page 126 ADDITIONAL FUNCTIONSAND UTILITIES XLISP-PLUS3.0



* Breakpoints may be set with the b command. You may set breakpoints a one function, eg. b
FOO<cr> sets a breakpoint at the function FOO, or at various functions & once, e.g. b (FOO FIE
FUM)<cr> sets breakpoints at the functions FOO, FIE, and FUM. Breakpoints are cleared with the ¢
command in an analogous way. Furthermore, a special form of the c command, ¢ *al* <cr>, clears dll
previously set breakpoints. Breakpoints are remembered from one invocation of step to the next, so it is
only necessary to set them once in a debugging session.

* The g command causes execution to proceed until a breakpoint is reached, at which time more stepper
commands can be entered.

* The f command sets a temporary breakpoint at one function, and causes execution to proceed until that
function is called.

* The u command continues execution until the form enclosing the current form is done, then re-enters
the stepper.

* Thew command prints a back trace.

* The g command quits and causes execution to continue uninterrupted.

* Entry and exit to functions are traced after a g, f, u, or g command. To turn off tracing, use the t
command which toggles the trace on/off.

* Also, with trace off, the values of function parameters are not printed.

* The s command causes the current form to be evaluated.

¢ The n command steps into the current form.

* The. and # commands change the compression of displayed forms. E.g. in the previous example:
1 >==> (if (or (=n1l) (=n2)1...):. 2
1 >==> (if (or (= n1l1 (=n2) ...) ...) ...)
changes the print length to 2, and
1 >==> (if (or (=n ...) ...) ...) : # 2
1 >==> (if (or #\# ...) ...) :
changes the print depth to 2.
* To print the entire form use the p command, which pretty-prints the entire form.
* The e command causes the current environment to be printed.
* Thex command causes an expression to be executed in the current environment. Note that this permits
the user to ater values while the program is running, and may affect execution of the program.
* Ther command causes the value of the given expression to be returned, i.e. makes it the return vaue
of the current form.

XLISP-PLUS3.0 ADDITIONAL FUNCTIONSAND UTILITIES Page 127



PP.LSP

In addition to the pretty-printer itsdlf, this file contains a few functions that illustrate some ssimple but useful
applications.

When the package feature is compiled in, these functions are in the TOOL S package.

(pp <object> [<stream>]) PRETTY PRINT EXPRESSION
(pp-def <funct> [<stream>]) PRETTY PRINT FUNCTION/MACRO
(pp-file <file> [<stream>]) PRETTY PRINT FILE

<object> The expression to print

<funct> Function to print (as DEFUN or DEFMACRO)

<file> File to print (specify either as string or quoted symbol)

<stream> Output stream (default is * standard-output*)

returns t

Globa variables: tabsze maxsze miser-9ze min-miser-car max-normal-car

Functions/Macros. sym-function pp-file pp-def make-def pp ppl moveto spaces pp-rest-across pp-rest
printmacrop pp-binding-form pp-do-form pp-defining-form pp-par-form

See the source file for more information.

Page 128 ADDITIONAL FUNCTIONSAND UTILITIES XLISP-PLUS3.0



DOCUMENT.LSP

This file provides the documentation feature of Common Lisp. When loaded, glossary descriptions of
system functions and variables are installed from the file GLOS.TXT. References are made directly to the
file so that the size of the XLISP image will not increase. The following functions are implemented:

(documentation <symbol> <doctype>) GET DOCUMENTATION STRING
Usewith SETF to ater documentation string.
<symbol> Symbol of interest
<doctype> Documentation type, one of FUNCTION, VARIABLE, STRUCTURE, SETF,
or TYPE
returns Documentation string
(glos <symbol> [t]) GET DOCUMENTATION
Defined in package TOOLS.
<symbol> Either the symbol for which the documentation is requested, or a string which
will match al symbol names containing that string
t Flag saying to treat symbol as a string, and match al related names
returns nothing

Documentation can be added via the DEFCONSTANT, DEFPARAMETER, DEFVAR, DEFUN,
DEFMACRO, and DEFSTRUCT functions as well as via DOCUMENTATION. Documentation is
gored in the property list in properties %DOC-FUNCTION, %DOC-STRUCTURE, %DOC-
VARIABLE, %DOC-SETF, and %DOC-TYPE. The latter two are not currently used. These properties
either contain the documentation string or the offset into the GLOS.TXT file.

XLISP-PLUS3.0 ADDITIONAL FUNCTIONSAND UTILITIES Page 129



INSPECT.LSP

INSPECT.L SP contains an XLISP editor/inspector. When the package feature is compiled in, the editor is
in the TOOLS package. Two functions, INSPECT and DESCRIBE, are part of Common Lisp and are in
the XLISP package.

(ins <symbol>) INSPECT A SYMBOL
(inspect <expr>) INSPECTOR
(insf <symbol>) INSPECT FUNCTION BINDING

INS and INSF defined as macros in package TOOLS. INSF edits the function binding and allows
changing the argument list or type (MACRO or LAMBDA).

<symbol> Symbal to ingpect (quoted)
<expr> Expression to inspect
returns Symbol or expression
(describe <expr>) DESCRIBE
Tellswhat <expr> is, but doesn't allow editing. Use INSPECT to edit.
<expr> Expression to describe
returns The expression

The editor aters the current selection by copying so that aborting al changes is generally possible; the
exception is when editing a closure, if the closure is backed out of, the change is permanent. Also,
naturally, changing the values of structure elements, instance variables, or symbols cannot be undone.

For dl commands taking a numeric argument, the first element of the selection is the Oth (as in NTH
function).

Do not create new closures, because the environment will be incorrect. Closures become LAMBDA or
MACRO expressions as the selection. Only the closure body may be changed; the argument list cannot be
successfully modified, nor can the environment.

For class objects, the class variables, methods and message names can be modified. For instance objects,
instance variables can be examined (if the object under-stands the message :<ivar> for the particular ivar),
and changed (if :SET-IVAR is defined for that class, as it is if CLASSES.LSP is used). Structure
elements can be examined and changed.

(command list on next page)

Page 130 ADDITIONAL FUNCTIONSAND UTILITIES XLISP-PLUS3.0



COMMANDS (al "

?

A

D
en
rnx
X

Q

b
Bn
I

Y

.n
#n
' X
R x

hot keyed and case sengitive"):

List available commands

select the CAR of the current selection.

select the CDR of the current selection.

select ("Edit") element n

Replaces element n with x.

eXit, saving al changes

Quit, without saving changes

go Back one level (backs up A, D or e commands)

go Back n levels.

List selection using pprint; if selection is symbol, give short description
Verbosty toggle

change maximum print length (default is 10)

change maximum print depth (default is 3)

evaluates x and prints result, the symbol tools.@ is bound to the selection
Replaces the salection with evaluated x, the symbol tools:@ is bound to the selection

ADDITIONAL COMMANDS (selection isalist or array):

(nm
)n
[nm
inx
dn
Sxy

inserts parenthesis starting with the nth element, for m elements.

removes parenthesis surrounding nth element of selection, which may be array or list
asin (, but makes elements into an array

Inserts x before nth element in selection.

Deletes nth element in selection.

Substitute all occurrences of y with x in selection (which must be alist). EQUAL is
used for the comparison.

XLISP-PLUS 3.0

ADDITIONAL FUNCTIONSAND UTILITIES Page 131



MEMO.LSP

This file contains the utility memoize, which transforms a given function so that it will save the results of
previous computations for later use. Whenever a memoized function is called, it will first look in its
allocated memoization table to see if the result has been previoudy calculated and, if found, returns it
immediately. Otherwise, it proceeds with the normal execution and, at the end, saves the result for future
use. This utility can dramatically increase execution speed, specidly with recursive functions. When the
package feature is compiled in, this utility isin the TOOLS package.

As an example, let's use memoize with the function fib, which calculates the n-th Fibonacci number, asin
the stepper section:

First, let's define the function fib:
>(defun fib (n)
(if (or (=n1l1) (=n 2))
1
(+ (fib (1- n)) (fibo (- n 2))) ))

Now let's see how long it takes to calculate Fib (10):

> (time (fib 20))
The eval uati on took 9.40 seconds.
10946

Now let's use the memoization:

> (menoi ze 'fib)

#<Cl osure: #37a7034b>

> (time (fib 20))

The eval uation took 0.03 seconds.
10946

Quite a dramatic improvement!.

By default, a memoized function checks only its first argument to see if the result has been previoudy
saved. If you want the memoized function to check more than one argument, use the optiona :key
parameter to compare with the desired number of parameters, and :test to make the comparison.

> (menoi ze ‘function-with-2-args :key # (lanbda (Ist) (cons (first |st)(second
Ist))) :test # equal)

To reset the memoizing table of afunction, call clear-memoize:

> (clear-nmenoize ‘fib)
#i<Hash-tabl e: #2ebf 38b2>
Cdling unmemoize resets a given function to its previous definition.

> (unmenoi ze ‘fib)

Page 132 ADDITIONAL FUNCTIONSAND UTILITIES XLISP-PLUS3.0



PROFILE.LSP

This file contains a series of macros for a utility caled profiling, which helps you monitor the execution of
functions. It can be very useful when deciding what to optimize in a program. Profiling a function means
monitoring how many times the function is called and how long does its execution take. After running a
program containing profiled functions, a profile report can be printed with statistics comparing the use of
those functions. Therefore, we know which part of the code is more sensitive to optimization. When the
package feature is compiled in, this utility isin the TOOLS package.

Example:

> (profile foo fee fii)
(foo fee fii)
> (function-calling-foo-fee-fii)

> (profile-report)
Total elapsed tine: 0.16 seconds.

Count Secs Time% Nane
10 0. 00 0% foo
5 0.01 3% fee
5 0. 30 97% fii

Cadlling the function profile without arguments, returns the list of profiled functions:
> (profile)

(foo fee fii)

Y ou can desdlect one or more functions with unprofile:

> (unprofile foo fee)

There is provided a further macro called with-profiling, which encompasses the above process of
profiling/executing/reporting/unprofiling in one single block. The following has the same effect as the
previous steps input sequentialy:

> (with-profiling (foo fee fii) (function-calling-foo-fee-fii))

XLISP-PLUS3.0 ADDITIONAL FUNCTIONSAND UTILITIES Page 133



LIVING WITH PACKAGES

Befor e Packages

In XLISP-PLUS (as in most traditional LISP implementations) symbols that are read in are looked up in
an object array (or list) called *OBARRAY*. This is a hash table of all interned symbols. Because there
is only one object array, every symbol name has a unique symbol associated with it.

Unfortunately, a problem occurs when it is desired to load more than one application into the XLISP-
PLUS workspace. If two applications use the same symbol name for two different functions, then the first
application will not run after the second is loaded. Likewise there can be problems if the symbols are used
as variables or constants.

The Package Concept

Common Lisp solves this problem by providing “packages.” A package is basicaly an independent object
table that can be associated with individua projects. With separate object tables, symbol usage conflicts
can be avoided.

In the XLISP-PLUS implementation, each package consists of two object arrays, one for the “interna”
symbols and the other for the “external” symbols. External symbols are those intended for access in other
packages, while internal symbols are those intended to be private in the package. Thereisaso a“use’ i,
and a “shadowing symbols’ list. In addition, each symbol has a pointer to its “home package.” Packages
are uniquely named, and have a name space separate from that of symbols. Each package has a
“nickname” list of alternate names for itsalf.

Initialy there are three packages, XLISP, KEYWORD, and USER. All keywords are in the external table
of the KEYWORD package, while al other symbols are in the XLISP package. The USER package is
empty. The “current package’ is bound to the symbol * PACKAGE*. The prompt line shows the current
package, if it is other than USER, which isthe initia defaullt.

When a symbol name is read (with the READ function or from the prompt line) the symbol islooked up in
both the internal and external object arrays of the current package and then in the external object arrays of
all packages in the current package's use list. By default, the use list of the package USER contains
XLISP.

If the symbol rame is not found, it is entered in the internal object array of the current package and the
symbol’s home package is set to the current package. This is also the operation of the INTERN function,
which alows one to intern a symbol in either the current or any specified package.

Getting Information

There are several functions which alow obtaining information about packages. FIND-PACKAGE takes a
name string and returns the package of that name. Most functions that take package arguments also take
a name string or symbol. The contents of a package object can be examined with PACKAGE-NAME
(name string of package), PACKAGE-NICKNAMES (nicknames of package), PACKAGE-OBARRAY
(either the externd or interna  object array, this supercedes *OBARRAY™),
PACKAGE-SHADOWING-SYMBOLS (ligt of shadowing symbols), and PACKAGE-USE-LIST (use
list). In addition, PACKAGE-USED-BY-LIST returns the list of packages that have the indicated
package in their use lists. LIST-ALL-PACKAGES will return alist of al the packages in the system.

Page 134 LIVING WITH PACKAGES XLISP-PLUS3.0



SYMBOL-PACKAGE will return the home package of a symbol. FIND-PACKAGE will look up a
symbol (given a name string) in a single package and return the symbol (if found) and an indicator of the
symbol being internd, external, or inherited via USE-PACKAGE.

Explicitly Accessing Symbolsin Other Packages

It is possible to access symbols in other packages that aren’t in the use list of the current package via a
fully specified symbol name. The syntax is * packagename:symbolname” for symbols external in the other
package or “ packagename::symbolname” for symbols interna (or external) in the other package. Note that
the colon character can be escaped and then becomes a constituent character; there is a difference
between |FOO:BAR| and FOO:BAR. Also be wary of the readtable-case :INVERT option — if the fully
qualified name is mixed case, then no inversion is performed on either the package or symbol name.

The use of “::” for internal symbols instead of “:” has the intent to make them more difficult to access.
Note that there is no mechanism to prevent access — there are no truly private symbols in a package.

An empty package name is taken to be the KEYWORD package. New keywords are always created as
external.

Creating a New Package

The function MAKE-PACKAGE is used to create a new package. However, it is an error to create a
package with a name that aready exists. Application source files should create a new package only if the
package they are using doesn't exist. This can be done using FIND-PACKAGE via

(unl ess (find-package “FOO)
(make- package “FOO"))

or by using the DEFPACKAGE macro. MAKE-PACKAGE has a keyword argument, :USE, which
allows specifying the package use list for the new package. Most packages will at least be using the
XLISPintringc functions, so will typicaly be defined:

(make- package "FOO' :use ' ("XLISP"))

Notice that the package names are expressed as strings. It's aso possible to use a symbol, in which case
its print name is used as the package name. Y ou can also use the package object itsdf, if you have it as
the return value of afunction.

To add the definitions for the new package, one needs to change the current package to be the new
package. This is done with the IN-PACKAGE function:

(i n-package "FOQO")

which will change the value of * PACKAGE*. Be aware that definitions that use symbol names which are
aready visible (such as in the XLISP package) will ater existing definitions. You must be careful not to
define external symbols in the XLISP package or any other package in the use list. The package system
doesn't protect against this!

Exporting Symbols

Just as the XLISP package hes externa symbols for it's documented functions, applications will typically
want their documented interface symbols to be external. This is done with the EXPORT function. The
USE-PACKAGE function is then executed in any package which wishes to use the application package.

XLISP-PLUS3.0 LIVING WITH PACKAGES Page 135



The EXPORT function makes certain that each exported symbol name not be visible in any other package
which uses this package unless that name is in the shadow list or refers to a different symbol. Since in
most cases the package won't be used until it is read (and EXPORTed), thisis not a frequent occurrence.
However the error created is correctable, and action can be taken at load time.

> "conflict ;; Create synbol “conflict”
conflict

> (nmake-package "FOO' :use '("XLISP")) ;; Create a new package, FOO
#<Package FOO>

> (use-package "FOO") ;; package USER uses FOO

t

> (i n-package "FQOO'") ;; add definitions to FOO
#<Package FOO>

FOO> 'conflict ;; create synbol “conflict” in FOO
conflict

FOO> (export 'conflict) ;7 Now try to export it
Name conflict with user::conflict in #<Package USER>
when exporting conflict from #<Package FOO>
error: nanme conflict
if continued: recheck for conflicts
FOO 1>

One now has to resolve the conflict. This can be done by not exporting the symbol (which probably isn't
desired), uninterning the symbol user::conflict making foo:conflict accessible in USER, or shadowing the
symbol user::conflict making foo:conflict only accessble in USER if a fully quaified name is used. If we
unintern:

FOO 1> (unintern "user::conflict "USER"') ;; unintern the symbol from USER
t

FOO 1> (conti nue)

[ continue from break |oop ]

t

FOO> (synbol - package 'user::conflict) ;; see what user::conflict is
#<Package FOO>

note that it is important in this case to unintern the correct symbol from the correct package. The name
conflict message hints at what is needed. Uninterning a symbol removes it from either the interna or
externd object array in the indicated package. It returns t if successful. If the symbol is not in the object
array of the package, then UNINTERN returns nil.

The use of shadowing will be described in alater section.
Typicdly al symbols that are desired to be exported are done with a single statement
at the top of the application source file:

(export ‘(foo bar bas ...))

Page 136 LIVING WITH PACKAGES XLISP-PLUS3.0



Once a symbol has been exported, it can be accessed with just a single colon inits fully qualified name. A
package can make dl externd symbols visible without use of colon syntax with the USE-PACKAGE
function. The use-package function does not ater any of the object arrays, but adds the used package to
the use list of the using package. Again, a name consistency check is performed. In this example, we will
do al our operationsin the USER package:

> 'conflict ;; add synbol “conflict” to USER package
conflict

> (make- package "FOO") ;; create a new package, FOO

#<Package FOO>

> 'foo::conflict ;; add synbol “conflict” to FOO package
foo::conflict

> (export '"foo::conflict "FOO') ;; export “conflict” from FOO

t

> (use-package "FOO") ;; try to use package FOO i n USER

Nanme conflict of foo:conflict and conflict
when usi ng #<Package FOO> in #<Package USER>

error: nane conflicts

if continued: recheck for conflicts

1>

Just like the previous example of EXPORT, we need to pick which symbol named “conflict” will be
vishle. Again, we can use unintern to remove user::conflict, allowing access of foo:conflict:

1> (unintern 'conflict)

t

1> (conti nue)

[ continue from break |oop ]
t

> (synbol - package 'conflict)
#<Package FOO>

We didn’t need to specify package USER in the UNINTERN function because the current package is
USER and UNINTERN, like most package functions, defaults to the current package.

In this example, the conflict was between a symbol in the package we want toa use with one in the
current package. It is aso possible to have a conflict between the symbol in the package we want to use
and one in another package that has been made visible by a previous USE-PACKAGE. In this case,
UNINTERN won't work because the symbol is not interned in the current package. The solution isto use
the function SHADOWING-IMPORT, which is defined in the section “ Shadowing Symbols.”

XLISP-PLUS3.0 LIVING WITH PACKAGES Page 137



Importing Symbols

Besides the EXPORT/USE-PACKAGE method of making symbols visible in a package, it is dso possble
to actualy intern a symbol that is already interned in another package. The function that does this is
IMPORT.

> (make- package "FQOO') ;; Make a new package, FOO

#<Package FOO>

> (setq foo::x 10) ;; Define a synbol in that package
10

> (inmport 'foo::x) ;; Inport it into the current package
t

> (synbol - package ' x) ;; Check —is it accessabl e?
#<Package FOO> ;7 Yes, it's the one in package FOO

As with the EXPORT/USE-PACKAGE method, a conflict will occur if the imported symbol aready
exists in the package being imported into. The problem can be resolved by either usng UNINTERN or
SHADOWING-IMPORT.

Shadowing Symbols

When a symbol is “shadowed” in a package, conflict errors are ignored. This means that when the
package is current that symbol will aways be found in alookup rather than a symbol in another package.

Back to the example in “Exporting Symbols’:

FOO 1> (unintern "user::conflict "USER') ;; unintern the synbol from USER
t

FOO 1> (conti nue)

[ continue from break |oop ]

t

FOO> (synbol - package 'user::conflict) ;; see what user::conflict is
#<Package FOO>

Here is result of using shadow:

FOO 1> (shadow 'user::conflict "USER') ;; shadow user::conflict in USER
t

FOO 1> (conti nue)

[ continue from break |oop ]

t

FOO> (symbol - package 'user::conflict) ;; see what user::conflict is
#<Package USER>

Page 138 LIVING WITH PACKAGES XLISP-PLUS3.0



Congder this example, in which we will do al our actions in the USER package:

> (make- package "FOO") ;; package FOO won’'t use any ot her package
#<Package FOO>

> 'foo::car 7, this will intern a synbol CAR in FOO
foo::car

> (export 'foo::car "FOO'") ;; export foo::car from FOO

t

> (use-package "FOO") ;; create an error on USE- PACKAGE

Nane conflict of foo:car and car
when usi ng #<Package FOO> in #<Package USER>
error: nane conflicts
if continued: recheck for conflicts
1> (symbol - package ‘ car)
#<Package XLI SP>
1>

The conflict occurs between the symbol CAR in FOO and the symbol CAR in XLISP, which isvisiblein
USER because XLISP isin USER’s use list. We will have to use SHADOWING-IMPORT to indicate
the one we wish to see.

1> (shadowi ng-inport 'xlisp:car)
t

1> (continue)

[ continue from break | oop ]

t

> (synbol - package 'car) ;7 The visible synmbol is the one in XLISP
#<Package XLI SP>

> (find-synbol "CAR" "USER") ;; However it is interned in USER as wel |
car

sinterna

XLISP-PLUS3.0 LIVING WITH PACKAGES Page 139



USING MACROS

Macros in Lisp provide a very powerful and flexible method of extending Lisp syntax. They are much,
much more powerful than #define macros in C: Lisp macros are a full-fledged code-generation system,
while C #define macros are simple string substitutions. Although extremely powerful and useful, macros
are dso significantly harder to design and debug than normal Lisp functions, and are normally considered a
topic for the advanced Lisp devel oper.

Lisp functions take Lisp values as input and return Lisp values. They are executed at run-time. Lisp
macros take Lisp code as input, and return Lisp code. They are executed at compiler pre-processor time,
just like n C. The resultant code gets executed at run-time. Almost al the errors that result from using
macros can be traced to a misunderstanding of this fact.

Basic | deaBasic | dea

Macros take unevaluated Lisp code and return a Lisp form. This form should be code that calculates the
proper vaue. Example:

(def macro Square (X) (* , X, X))

This means that wherever the pre-processor sees (Square XXX) to replaces it with (* XXX XXX). The
resultant code is what the compiler sees.

Debugging technique: macroexpand-1Debugging technique: macr oexpand-1

When designing a function, you can type a cal to the function into the Lisp Listener (prompt), and seeif it
returns the correct value. However, when you type a macro "cdl" into the Lisp Listener, two things
happen: first, the macro is expanded into its resultant code, and then that code is evaluated. It is more
useful during debugging to be able to examine the results of these two steps individualy. The function
macroexpand-1 returns the result of stage one of this process:

(macroexpand-1 ' (Square 9)) ==> (* 9 9)

"If in doubt, macroexpand-1 it out."

Page 140 USING MACROS XLISP-PLUS 3.0



Purpose: To control evaluation of the argumentsPurpose: To control evaluation of the
arguments

Since macros are so much harder to use than functions, a good rule of thumb is: don't use defmacro if
defun will work fine. So, for example, there would be no reason to try to use a macro for Square: a
function would be much easier to write and test. In Lisp, unlike in C, there is no need to use mecrosto
avoid the very small runtime overhead of a function call: there is a separate method for that (the "inline"
proclamation) that lets you do this without switching to a different syntax. What macros can do that
functions cannot is to control when the arguments get evaluated. Functions evaluate al of their arguments
before entering the body of the function. Macros don't evaluate any of their arguments at preprocessor
time unless you tell it to, so it can expand into code that might not evaluate al d the arguments. For
example, suppose that cond was in the language, but if wasn't, and you wanted to write a version of if
using cond.

(defun Iff-Wong (Test Then &optional Else)
(cond
(Test Then)
(t El se)))

The problem with this is that it always evaluates al of its arguments, while the semantics of if dictate that
exactly one of the Then and Else arguments gets evaluated. For example:

(let ((Test "A))
(Iff-Wong (nunmberp Test)
(sqrt Test)
"Sorry, SQRT only defined for nunbers"))

will crash, since it triesto take (sgrt 'A). A correct version, with behavior identical to the built-in if (except
that the red if only has one required arg, not two), would be:

(defrmacro I1ff (Test Then &optional El se)

"A replacenment for IF, takes 2 or 3 argunents. If the first evaluates to
non-NI L, evaluate and return the second. Ot herw se evaluate and return t he
third (which defaults to NIL)"

' (cond

(, Test , Then)
(t ,Else)) )

A similar example would be NAND ("Not AND"), which returns true if at least one of the arguments is
fdse, but, like the built-in and, does "short-circuit evaluation” whereby once it has the answer it returns
immediately without evaluating later arguments.

(def macro Nand (&rest Args)
"(not (and , @\rgs)))

BugsBugs

* (A) Trying to evaluate arguments at run-time
¢ (B) Evaluating arguments too many times
* (C) Variable name clashes.

XLISP-PLUS3.0 USING MACROS Page 141



(A) Trying to evaluate arguments at run-time

Macros are expanded at compiler pre-processor time. Thus, the values of the arguments are generally not
available, and code that tries to make use of them will not work. |.e. consider the following definition of
Square, which tries to replace (Square 4) with 16 instead of with (* 4 4).

(def macro Square (X) (* X X))

This would indeed work for (Square 4), but would crash for (Square X), since X is probably a variable
whose value is not known until run-time. Since macros do sometimes make use of variables and functions
a expanson time, and to smplify debugging in generd, it is strongly recommended that all macro
definitions and any variables and functions that they use at expansion time (as opposed to code
they actually expand into) be placed in a separate file that is loaded before any files containing
code that makes use of the macros.

(B) Evaluating arguments too many times

Let's take another look at our first definition of the Square macro.
(defmacro Square (X) "(* ,X , X))

This looks OK on first blush. However, try macroexpand-1ing a form, and you notice that it evaluates its
arguments twice:

(macroexpand-1 ' (Square (Foo 2))) ==> (* (Foo 2) (Foo 2))

Foo gets caled twice, but it should only be called once. Not only is this inefficient, but could return the
wrong value if Foo does not aways return the same value. |.e. consider Next-Integer, which returns 1 the
first time caled, then 2, then 3. (Square (Next-Integer)) would return N*(N+1), not N2, plus would
advance N by 2. Smilarly, (Square (random 10)) would not necessarily generate a perfect square! With
Lisp you have the full power of the language available a preprocessor time (unlike in C), so you can use
ordinary Lisp congtructs to solve this problem. In this case, let can be used to store the result in a local
variable to prevent multiple evauation. Thereis no general solution to this type of problemin C.

(def macro Square2 (X)
“(let ((Temp , X))
(* Tenp Tenp)))

(macroexpand-1 ' (Square2 (Foo 2)))
==> (let ((Tenp (Foo 2)))
(* Tenp Tenp))

Thisis what we want.

Page 142 USING MACROS XLISP-PLUS 3.0



(C) Variable name clashes.

When using let to suppress multiple evaluation, one needs to be sure that there is no conflict between the
local variable chosen and any existing variable names. The above version of Square2 is perfectly safe, but
consider instead the following macro, which takes two numbers and squares the sum of them:

(def macro Square-Sum (X Y)
"(let* ((First , X
(Second ,Y)
(Sum (+ First Second)))
(* Sum Sum) )

This looks pretty good, even after macroexpansion:

(macr oexpand-1 ' (Square-Sum 3 4))
==> (LET* ((FIRST 3)
( SECOND 4)
(SUM (+ FI RST SECOND)))
(* SUM SUM)

which gives the proper result. However, this version has a subtle problem. The loca variables we chose
would conflict with existing local variable names if a variable named First already existed. E.g.

(macroexpand-1 ' (Square-Sum 1 First))
==> (LET* ((FIRST 1)
( SECOND FI RST)
(SUM (+ FI RST SECOND)))
(* SUM SUMm)

The problem here is that (SECOND FIRST) gets the value of the new local variable FIRST, not the one
you passed in. Thus

(let ((First 9)) (Square-Sum 1 First))

returns 4, not 100! Solutions to this type of problem are quite complicated, and involve usng gensym to
generate aloca variable name that is guaranteed to be unique.

Morad: even seemingly smple macros are hard to get right, so don't use macros unless they really add
something. Both Sgquare and Sgquare-Sum are inappropriate uses of macros.

(def macro Square-Sun? (X YY)
(let ((First (gensym"FIRST-"))
(Second (gensym " SECOND-"))
(Sum (gensym "SUM-")))
"(let* ((,First ,X)
(, Second ,Y)
(,Sum (+ ,First ,Second)))
(* ,Sum,Sum) ))

XLISP-PLUS 3.0 USING MACROS Page 143



Now

(macr oexpand-1 ' (Square-Sun? 1 First))
==> (LET* ((#: FIRST-590 1)
(#: SECOND- 591 FI RST)
(#: SUM 592 (+ #: FI RST-590 #: SECOND- 591)))
(* #:SUM 592 #: SUM 592))

This expansion has no dependence on any local variable names in the macro definition itself, and since the
generated ones are guaranteed to be unique, is safe from name collisions.

Page 144 USING MACROS XLISP-PLUS 3.0



USING FILE I/O FUNCTIONS

Input from a Filelnput from a File

To open afile for input, use the OPEN function with the keyword argument :DIRECTION set to :INPUT.
To open a file for output, use the OPEN function with the keyword argument :DIRECTION set to
:OUTPUT. The OPEN function takes a single required argument which is the name of the file to be
opened. This name can be in the form of a string or a symbol. The OPEN function returns an object of
type FILE-STREAM (if it succeeds in opening the specified file. It returns the value nil if it fails. In order
to manipulate the file, it is necessary to save the value returned by the OPEN function. This is usualy
done by assigning it to a variable with the SETQ specia form or by binding it usng LET or LET*. Hereis
an example:

(setg fp (open "init.lsp" :direction :input))

Evaluating this expression will result in the file "init.Isp" being opened. The file object that will be returned
by the OPEN function will be assigned to the variable "fp".

It is now possible to use the file for input. To read an expression from the file, just supply the value of the
"fp" variable as the optiona "stream™ argument to READ.

(read fp)

Evaluating this expression will result in reading the first expression from the file "init.Isp". The expresson
will be returned as the result of the READ function. More expressions can be read from the file using
further calls to the READ function. When there are no more expressions to read, the READ function will
give an error (or if asecond nil argument is specified, will return nil or whatever value was supplied as the
third argument to READ).

Once you are done reading from the file, you should close it. To close the file, use the following
expression:

(close fp)

Evaluating this expression will cause the file to be closed.

Output to a FileOutput to a File

Writing to afile is pretty much the same as reading from one. You need to open the file first. This time
you should use the OPEN function to indicate that you will do output to the file. For example:

(setg fp (open "test.dat" :direction :output :if-exists :supersede))

Evaluating this expresson will open the file "test.dat” for output. If the file already exists, its current
contents will be discarded. If it doesn't aready exigt, it will be created. In any case, a FILE-STREAM
object will be returned by the OPEN function. This file object will be assigned to the "fp" variable.

It is row possible to write to this file by supplying the value of the "fp" variable as the optional "stream”
parameter in the PRINT function.

(print "Hello there" fp)

XLISP-PLUS3.0 USING FILE I/O FUNCTIONS Page 145



Evaluating this expression will result in the string "Hello there" being written to the file "test.dat”. More
data can be written to the file using the same technique.

Once you are done writing to the file, you should close it. Closing an outpuit file is just like closing an input
file

(close fp)

Evaluating this expression will close the output file and make it permanent.
A Slightly More Complicated File Example

This example shows how to open a file, read each Lisp expresson from the file and print it. It
demonstrates the use of files and the use of the optional "stream" argument to the READ function.

(do* ((fp (open "test.dat" :direction :input))
(ex (read fp nil) (read fp nil)))
((nul'l ex) (close fp) nil)
(print ex))

The file will be closed with the next garbage collection.

Page 146 USING FILE I/O FUNCTIONS XLISP-PLUS3.0



XLISP-PLUS INTERNALS

Who should read this section?

Anyone poking through the C implementation of XLISP for the first time. This is intended to provide a
rough road map of the global XLISP structures and agorithms. If you just want to write Lisp code in
XLISP, you don't need to read this section. If you want to tinker with the XLISP implementation code, you
should *till* read that before reading this. The following isn't intended to be exhaugtively precise -- that's
what the source code is for! It is intended only to give you sufficient orientation to give you a fighting
chance to understand the code the first time through, instead of the third time.

At the end of the section you'll find an example of how to add new primitive functions to XLISP.

General noteon MSDOS Memory Models

If you are not usng MS-DOS ignore al the "FAR" and "NEAR" keywords. Also ignore MEDMEM, and
most uppercase macros default to the lowercase library functions.

For MS-DOS, originaly XLISP used Large memory model. However in order to allow for aclean MS
Windows port (never completed :-() and to improve performance, the code was overhauled to use Medium
memory model. Every XLISP object is alocated from FAR memory, so pointers need to be cast to FAR.
Locd variables, and statically allocated global variables are NEAR, however. Since FAR strings cannot be
handled by Medium modd library string routines, they must be modeled into a NEAR buffer first.

Other added confusions

There are two separate sets of memory alocation/garbage collection routines. One pair, xldmem/xlimage,
was the traditional XLISP dlocator. The second pair, dldmem/dlimage, additionally manages arrays and
grings. In the original verson, maloc and free are used, which can cause memory fragmentation
problems. The dl pair compresses array memory segments to eliminate fragmentation.

There are many compilation options. Thank goodness many more have been diminated.

What isan LVAL?

An LVAL is the C type for a generic pointer to an XLISP garbage-collectable something. (Cons cell,
object, string, closure, symbol, vector, whatever.) Virtually every variable in the interpreter is an LVAL.
Cons cdlls contain two LVAL dots, symbols contains four LVAL dots, etc.

What isthe obarray?

The obarray is the XLISP symbol table. More precisaly, it is a hash table mapping ASCII strings (symbol
names) to symbols. ("obarray" is a misnomer, since it contains only XLISP SYMBOLSs, and in particular
contains no XLISP OBJECTSs) It is used when converting Lisp expressions from text to internal form.
Since it is aroot for the garbage collector, it also serves to distinguish permanent global-variable symbols
from other symbols -- you can permanently protect a symbol from the garbage collector by entering it into
the obarray. This is caled "interning” the symbol. The obarray is caled "obaray" in C and
"*OBARRAY*" in XLISP.

XLISP-PLUS3.0 XLISP-PLUSINTERNALS Page 147



When the package facility is compiled, *OBARRAY* no longer exists, and obarray is alist of packages.
A package is a structure (an array) of six elements. The first is an obarray for the interna symbolsin the
package, the second is an obarray for the external symbols, the third is a list of shadowing symbols, the
fourth isalist of packages this package uses, the fifth isalist of packages which use this package, and the
sxth is aligt of the package's names with all but the first being the nicknames. In addition, symbols have
an additiond attribute in their structure which is the home package of the symbol.

The Interpreter Stacks

XLISP uses two stacks, an "evauation stack” and an "argument stack”. Both are roots for the garbage
collector. The evauation stack is largely private to the interpreter and protects internal values from
garbage collection, while the argument stack holds the conventional user-visible stack frames.

The evauation stack is an EDEPTH-long array of LVAL saticaly alocated. It grows zeroward.
xlstkbase points to the zero-near end of the evaluation stack.

xlstktop points to the zero-far end of the evaluation stack: the occupied part of the stack lies between
xlstack and xlstktop. Note that xlIstktop is *NOT* the top of the stack in the conventiona sense of
indicating the most recent entry on the stack: xIstktop is a static bounds pointer which never changes.

xlstack starts at the zero-far end of the evauation stack. *xIstack is the most recent LVAL on the stack.
The garbage collector MARKS everything reachable from the evaluation stack (among other things), so
we frequently push things on this stack while C code is manipulating them. (Via xlsave(), xlprotect(),
xlsavel(), xlprotl().)

The argument stack is an ADEPTH-long array of LVAL. It aso grows zeroward. The evauator pushes
arguments on the argument stack at the start of a function call (form evaluation). Built-in functions usudly
eat them directly off the stack. For user-Lisp functions xleval.c.evfun() pops them off the stack and binds
them to the appropriate symbols before beginning execution of the function body proper.

xlargstkbase is the zero-near end of argument stack. xlargstktop is the zero-far end of argument stack.
Like xIstktop, xlargstktop is a static bounds pointer.

*xlsp ("gp"'=="gtack pointer") is the most recent item on the argument stack.
xlfp ("fp"=="frame pointer") is the base of the current stackframe.

What is a context?

An XLISP "context" is something like a checkpoint, recording a particular point buried in the execution
history so that we can abort/return back to it. Contexts are used to implement call/return, catch/throw,
signds, goto's, and breaks. xlcontext points to the chain of active contexts, the top one being the second-
newest active context. (The newest -- that is, current -- active context is implemented by the variables
xlstack xlenv xlIfenv xldenv xlcontext xlargv xlargc xlfp xIsp.) Context records are written by
xljump.c:xlbegin() and read by xljump.c:xljump(). Context records are C structures on the C program
stack; They are not in the dynamic memory pool or on the Lisp execution or argument stacks.

To create a context, the function defines alocal CONTEXT structure, and then calls xlbegin, passing the
address of the structure, the appropriate context flags (ORed together, if more than one), and an
expression which is the tag for return and throw contexts, and NIL for others. xlend is used to end the
context. Within the context, a setjmp using the jump buffer in the context structure provides the
mechanism to return to the function.

Page 148 XLISP-PLUSINTERNALS XLISP-PLUS3.0



The xljump function takes three arguments, the target context, a mask value (which is returned by the
setjmp in the target context), and a return value. The return value is typicdly NIL, but holds the return
vaue of RETURN and THROW functions for those operations. xljump unwinds the contexts until the
target context is found, or an UNWIND-PROTECT context is found. In the latter case, xunwindprotect
saves the unwind target so that unwinding can resume.

The implemented context flags are:

* CF_GO -- used by TAGBODY, searched by GO (and the xIgo function).

* CF_RETURN -- used by named blocks and functions, searched by RETURN.

* CF_THROW -- used by CATCH, searched by THROW.

* CF_ERROR -- used by ERRSET to mark context of an error handler.

* CF_UNWIND -- used by UNWIND-PROTECT.

* CF_TOPLEVEL -- used at the top-leve loop.

* CF_BRKLEVEL -- used in top level and break loops. Searched on uncaught (with CF_ERROR)
errors.

* CF_CLEANUP -- used in the top level and break loops. Searched when going back a bresk level.
Note that this and CF_BRKLEVEL aways appear together in contexts, but imply different
functionadity when signaled.

* CF_CONTINUE -- used in break loops to cause continuation.

In most cases, the mask value passed to xljump is the context flag. For the break loop, for example, this

alows dispatching based on the flag value of BRKLEVEL (which re-enters the debug loop), CLEANUP

(which returns to the previous break loop), or CONTINUE (which attempts to continue execution).

Starting with XLISP2.1g, in the case of the TAGBODY context, the mask vaue is the index into the

TAGBODY of the jump target.

What is an environment?

An environment is basically a store of symbol-value pairs, used to resolve variable references by the Lisp
program. XLISP maintains three environments, in the globa variables xlenv, xIfenv and xIdenv.

xlenv and xlfenv are linked-list stacks which are pushed when we enter a function and popped when we
exit it. We aso switch xlenv + xIfenf environments entirely when we begin executing a new closure (user-
fn written in Lisp). The xlenv environment is enlarged during a LET function (or other specia form with
vaue bindings), while the xIfenv environment is enlarged with FLET/MACROLET/LABELS.

The xlenv environment is the most heavily used environment. It is used to resolve everyday data
references to local variables. It consists of a list of frames (and objects). Each frame is a list of sym-val
pairs. In the case d an object, we check al the instance and class variables of the object, then do the
same for its superclass, until we run out of superclasses. If the symbol is not found it has not been bound
and its global vaue is used.

The xIfenv environment is used to find function values instead of variable values.

When we send a message, we set xlenv to the value it had when the message CLOSURE was built, then
push on (obj msg-class), where msg-class is the [super]class defining the method. (We adso set xIfenv to
the value xlIfenv had when the method was built.) This makes the object instance variables part of the
environment, and saves the information needed to correctly resolve references to class variables, and to
implement SEND-SUPER.

XLISP-PLUS3.0 XLISP-PLUSINTERNALS Page 149



The xldenv environment tracks the old values of global variables which we have changed but intend to
restore later to their original values, particularly for variables (symbols) marked as F_ SPECIAL, but dso
for progv. This is adso used internaly when we bind and unbind s evalhook and s applyhook
(*EVALHOOK* and * APPLYHOOK*). Itisasimple list of sym-val pairs, treated as a stack.

These environments are manipulated in C via the XLISP.h macros xIframe(e), xIbind(s,v), xIfbind(s,v),
xlpbind(s,v,€), xIdbind(sv), xlunbind(e).

How aremultiple return values handled?

The first value is dways returned via the C function mechanism. All return values are passed back in an
array xlresult[]. The number of return values are specified in xInumresults. In order to avoid having to
repeat the multiple vaue code in every function, a flag in the SUBR or FSUBR cdll indicates if multiple
vaues are used, and code in xleval.c mimics multiple value functions for single value functions. The
function VALUES, defined in xvalues() alows closures to return multiple values.

How are XL ISP entities stored and identified?

Conceptudly, XLISP manages memory as a single array of fixed-size objects. Keeping al objects the
same size ssimplifies memory management enormously, since any object can be allocated anywhere, and
complex compacting schemes aren't needed. Every LVAL pointer points somewhere in this array. Every
XLISP object has the basic format (xIdmem.h:typdef struct node)

struct node { char n_type; char n_flags; LVAL car; LVAL cdr; }
where n_typeis one of :

* FREE A node on thefreeligt.

* SUBR A function implemented in C. (Needs evaluated arguments.)

* FSUBR A specia function implemented in C. (Needs unevaluated arguments).
* CONSA regular Lisp cons cell.

* FXNUM An integer.

* FLONUM A floating-point number.

e STRING A string.

e STREAM Aninput or output file.

* CHAR An ASCII character.

* USTREAM An interna stream.

* RATIOA rdtio.

* SYMBOL A symbal.

e OBJECT Any object, including class objects.

* VECTOR A variable-size array of LVALS.

* CLOSURE Result of DEFUN or LAMBDA -- afunction written in Lisp.
e STRUCT A structure.

e COMPLEX A complex number

* BIGNUM A bignum (integer that won't fit a FIXNUM cell)

* PACKAGE A package

Messages may be sent only to nodes with n_type == OBJECT.

Page 150 XLISP-PLUSINTERNALS XLISP-PLUS3.0



Obvioudly, severad of the above types won't fit in a fixed-size two-slot node. The escape is to have them
malloc() some memory and have one of the dots point to it -- VECTOR is the archetype. For example,
see xldmem.c:newvector(). To some extent, this maloc() hack smply exports the memory- fragmentation
problem to the C malloc()/free() routines. However, it helps keep XLISP smple, and it has the happy side-
effect of unpinning the body of the vector, so that vectors can easily be expanded and contracted. When
the dldmem.c version of the memory manager is used, this memory is managed by XLISP and vector
memory is alocated from compressible vector segments.

The garbage collector has special-case code for each of the above node types, so it can find all LVAL
dots and recycle any maloc()ed ram when a node is garbage-collected. If the collected node is a
STREAM, then it's associated file is closed.

XLISP pre-alocates nodes for al ASCII characters, and for small integers. These nodes are never
garbage-collected.

Asapractica matter, allocating all nodesin asingle array is not very sensible. Instead, nodes are alocated
as needed, in segments of one or two thousand nodes, and the segments linked by a pointer chain rooted at
xldmem.c:segs.

How are vectorsimplemented?

An XLISP vector is a generic array of LVAL dlots. Vectors are aso the canonical illustration of XLISP's
escape mechanism for node types which need more than two LVAL dots (the maximum possible in the
fixed-size nodes in the dynamic memory pool). The node CAR/CDR dots for a vector hold a size field
plus a pointer to a maloc()ed ram chunk, which is automatically free()ed when the vector is garbage-
collected.

xldmem.h defines macros for reading and writing vector fields and dots. getsize(), getdlement() and
setelement(). It aso defines macros for accessing each of the other types of XLISP nodes.

How are strings implemented?

Strings work much like vectors: The node has a pointer to a malloc()ed ram chunk which is automaticaly
free()ed when the string gets garbage-collected. The size field of a string issize in bytes. Unlike C, the null
character can be a string constituent.

How are various numeric types implemented?

There are five numeric types: FIXNUM, BIGNUM, RATIO, FLONUM, and COMPLEX. The first two
congtitute integers, the first three rational numbers. BIGNUM, RATIO, and COMPLEX are optiona
types, with BIGNUM and RATIO requiring COMPLEX.

Numeric cells are never modified, new cells are created as necessary.

FIXNUMs are integers that fit in a FIXTYPE (typicaly "long"). The car dot (basicaly) ntains the
number. There is a pool of prealocated small fixnums (range SFIXMIN to SFIXMAX) that get reused.
Only these small FIXNUMs can be tested for equality with EQ.

BIGNUMs are used when an integer will not fit in a FIXNUM. A BIGNUM sdtructure is like an character
string, however the length is a multiple of sizeof(unsigned short). The first unsigned short cell contains the
sign of the number, and the remaining unsigned short cells contain the number, most significant part first.
The first numeric cell may be zero. Functions that can create bignum results will convert automaticaly to

XLISP-PLUS3.0 XLISP-PLUSINTERNALS Page 151



FIXNUM if the result fits, however with the function small BIGNUMSs can exist, and the number of
numeric cells must be at least two.

RATIOs have the car field pointing to the numerator cell and the cdr field pointing to the denominator cell.
These values must be either both FIXNUM or both BIGNUM.

FLONUMSs have the car (overflowing into the cdr) field containing the floating point value.

COMPLEXs were implemented as a two element array, but now are implemented like ratios. The two
elements are either both FLONUM S or both integers (rationds if ratiog/bignums allowed).

How are streams implemented?

A file stream node has four fields: a file pointer (type FILEP), a saved lookahead character, flags, and
character position within aline.

Thefile pointer is either aFILE * or the index into the file table. In the preferred file table implementation,
the index values CLOSED, STDIN, STDOUT, and CONSOLE are -1, and the first three entries which
are forced to stdin, stdout, and stderr, respectively. The file table entry contains the FILE *, the actud file
name (full pathname), and for Windows the reopen mode and file position. Under Windows, al files are
closed when waiting for input in order to be "friendly" to the Windows environment. The extrainformation
allows closing the files and then reopening them exactly as they were.

The saved lookahead character alows the peekchar function and internal unreadchar function to work.
The value i set to 0 when there is no lookahead character. This does not pose a problem since ASCII
files do not have null characters.

The flags fidld tells if the file is open for reading, writing, or both, and aso what the last direction was so
that an fseek can be performed on direction change. An additional bit keeps track of the file being opened
for ASCII or BINARY access.

The character position is used for tab calculations.

An unnamed stream is smply a TCONC structure. None of the above file information applies to unnamed
streams.

How are symbolsimplemented?

A symbol is a generic user-visible Lisp variable, with separate dots for print name, value, function, and
property list. Any or dl of these dots (including name) may be NIL. You create a symbol in C by cdling
"xImakesym(name)" or "xlenter(name)" (to make a symbol and enter it in the obarray). You create a
symbol in XLISP with the READ function, or by caling "(gensym)”, or indirectly in various ways. Most of
the symbol-specific code in the interpreter isin xIsym.c.

Physicdly, a symbol is implemented like a four- or five-dot vector. A couple of free bits in the node
structure are used as flags for F_SPECIAL (specia variables) and F_ CONSTANT (constants).

A symbal is marked as unbound (no vaue) or undefined (no function) by placing a pointer to symbol
s _unbound in the value or function field, respectively. The symbol s unbound is not interned and is not
used other than to set and check for unbound variables and undefined functions.

The symbol NIL is datically alocated so its address is a constant. This makes the frequent comparison of
apointer to NIL faster and more compact (in some cases).

Page 152 XLISP-PLUSINTERNALS XLISP-PLUS3.0



Random musing: Abstractly, the Lisp symbols plus cons cells (etc.) constitute a single directed graph, and
the symbols mark spots where norma recursive evaluation should stop. Norma Lisp programming
practice is to have a symbal in every cycle in the graph, so that recursive traversal can be done without
MARK bits.

How are closuresimplemented?

A closure, the return value from alambda, is a regular coded-in-Ligp fn. Physicaly, it implemented like an
eleven-dot vector, with the node n_type field hacked to contain CLOSURE instead of VECTOR. The
vector dots contain:

name symbol -- 1st arg of DEFUN. NIL for LAMBDA closures. type (s_lambda or s macro). args List
of "required’ forma arguments (as symbols) oargs List of "optiond" args, each like: (name (default
specified-p)) rest Name of "&rest" formal arg, else NIL. kargs keyword args, each like: ((:foo 'bar default
specified-p)) aargs &aux vars, each like: ((‘arg default)) body actual code (as Lisp list) for fn. env value of
xlenv when the closure was built. NIL for macros. fenv value of xIfenv when the closure was built. NIL
for macros. lambda The origina formal argslist in the defining form.

The lambda field is for printout purposes. The remaining fields store a pre-digested version of the formal
ags list. This is a limited form of compilation: by processing the args list a closure-creation time, we
reduce the work needed during calls to the closure.

How are objectsimplemented?

An object is implemented like a vector, with the size determined by the number of instance variables. The
first dot in the vector points to the class of the object; the remaining dots hold the instance variables for
the object. An object needs enough dots to hold al the instance variables defined by its class, *plus* al the
instance variables defined by al of its superclasses.

How are classes implemented?

A class is a specific kind of object, hence has a class pointer plus instance variables. All classes have the
following instance variables:

* MESSAGESA ligt of (interned-symbol method-closure) pairs.
* [IVARS Instance variable names: A list of interned symbals.

* CVARSClass variable names: A ligt of interned symbols.

e CVALSCClassvariable values: A vector of vaues.

* SUPERCLASS A pointer to the superclass.

e |IVARCNT Number of class instance variables, as a fixnum.

* |VARTOTAL Tota number of instance variables, as a fixnum.
e PNAME Printname for this class.

IVARCNT is the count of the number of instance variables defined by our class. IVARTOTAL is the
total number of instance variables in an object of this class -- IVARCNT for this class plus the
IVARCNTSs from all of our superclasses.

XLISP-PLUS3.0 XLISP-PLUSINTERNALS Page 153



How isthe class hierarchy laid out?

The fundamental objects are the OBJECT and CLASS class objects. (Both are instances of class
CLASS, and since CLASSes are a particular kind of OBJECT, both are aso objects, with
n_type==OBJECT. Bear with me!)

OBJECT is the root of the class hierarchy: everything you can send a message to is of type OBJECT.
(Vectors, chars, integers and so forth stand outside the object hierarchy -- you can't send messages to
them. I'm not sure why Dave did it thisway.) OBJECT defines the messages.

;isnew -- Does nothing.

:class -- Returns contents of class-pointer dot.

:show -- Prints names of obj, obj->class and instance vars (for debugging).
:prinl -- print the object to argument stream

A CLASS is a specidized type of OBJECT (with instance variables like MESSAGES which generic
OBJECTs lack), class CLASS hence has class OBJECT as its superclass. The CLASS object defines the

Messages:

* new -- Create new object with salf.IVARTOTAL LVAR dots, plus one for the class pointer. Point
classdot to self. Set new.n_type char to OBJECT.

* isnew -- Fill in IVARS, CVARS, CVALS, SUPERCLASS, IVARCNT and IVARTOTAL, using
parameters from :new call. (The :isnew msg inherits the :new msg parameters because the :isnew msg
is generated automatically after each :new msg, courtesy of a special hack in xlobj.c:sendmsg().)

* :answer -- Add a (msg closure) pair to self. MESSAGES.

Here's a figure to summarize the above, with a generic object thrown in for good measure. Note that all
instances of CLASS will have a SUPERCLASS pointer, but no non-class object will. Note also that the
messages known to an object are those which can be reached by following exactly one Class Ptr and then
zero or more Superclass Pirs. For example, the generic object can respond to :ISNEW, :CLASS and
:SHOW, but not to :NEW or :ANSWER. (The functions implementing the given messages are shown in
parentheses.)

Page 154 XLISP-PLUSINTERNALS XLISP-PLUS3.0



Msg +-------- +

;i snew (xl obj.c:obisnew) <----| class | Class Ptr
:class (xlobj.c:obclass) <----|] OBJECT |------------ +
:show (xl obj.c:objshow) <----] | |
F TS + |
[ TS + A |
| generic | Class Ptr | |
| object |---------------- + | Superclass Ptr |
[ TS + | |
Msg +-------- + |
;i snew (xlobj.c:clnew <----| class | Class Ptr |
i new (xl obj.c:clisnew) <----] CLASS |[-------- + |
;answer (x| obj.c:clanswer) <----| | | |
F TS + | |
N N | |
|| I I
| S + |
o e oo +

Thus, class CLASS inherits the :CLASS and :SHOW messages from class OBJECT, overrides the default
:ISNEW message, and provides new the messages :NEW and :ANSWER.

New classes are created by (send CLASS :NEW ...) messages. Their Class Ptr will point to CLASS. By
default, they will have OBJECT as their superclass, but this can be overridden by the second optional
argument to :NEW.

The above basic structure is set up by xlobj.c:xloinit().

How do we look up the value of a variable?

When we're cruising along evaluating an expression and encounter a symbol, the symbol might refer to a
global variable, an instance variable, or a class variable in any of our superclasses. Figuring out which
means digging through the environment. The canonica place this happens is in xleva.c:xleval(), which
smply passes the buck to xIsym.c:xlgetvalue(), which in turn passes the buck to xIxsym.c:xIxgetvalue(),
where the fun of scanning down xlenv begins. The xlenv environment looks something like

Backbone Environment frame contents

¢ xlenv --> frame ((symva) (symva) (symva) ...)
e frame...

* object (obj msg-class)

e frame...

* Object ...

e frame...

XLISP-PLUS3.0 XLISP-PLUSINTERNALS Page 155



The "frame" lines are due to everyday nested constructs like LET expressions, while the "object” lines
represent an object environment entered via a message send. xIxgetvalue scans the environment left to
right, and then top to bottom. It scans down the regular environment frames itself, and cdls
xlobj.c:xlobjgetvalue() to search the object environment frames.

xlobjgetvalue() first searches for the symbol in the msg-class, then in all the successive superclasses of
msg-class. In each class, it first checks the list of instance-variable namesin the IVARS dot, then the list
of class-variables name in the CVARS dot.

How are function callsimplemented?

xleval.c contains the central expression-evaluation code. xleva.c:xleval() is the standard top-level entry
point. The two central functions are xleva.c:xlevform() and xleva.c.evfun(). xlevform() can evauate four
kinds of expression nodes:

SUBR: A norma primitive fn coded in C. We call evpushargs() to evauate and push the arguments, then
cdl the primitive.

FSUBR: A specid primitive fn coded in C, which (like IF) wants its arguments unevaluated. We call
pushargs() (instead of evpushargs()) and then the C fn.

CLOSURE: A pre-processed written-in-Lisp fn from a DEFUN or LAMBDA. We call evpushargs() and
then evfun().

CONS: Weissue an error if it isn't aLAMBDA, otherwise we cdl xleval.c:xlclos() to build a CLOSURE
from the LAMBDA, and fall into the CLOSURE code.

The common thread in all the above cases is that we call evpushargs() or pushargs() to push al the
arguments on the evaluation stack, leaving the number and location of the arguments in the globa variables
xlargc and xlargv. The primitive C functions consume their arguments directly from the argument stack.

xleval.c.evfun() evaluates a CLOSURE by:

(2) Switching xlenv and xIfenv to the values they had when the CLOSURE was built. (These values are
recorded in the CLOSURE.)

(2) Binding the arguments to the environment. This involves scanning through the section of the argument
stack indicated by xlargc/xlargv, using information from the CLOSURE to resolve keyword arguments
correctly and assign appropriate default values to optional arguments, among other things.

(3) Evauating the body of the function via xleval.c:xleval().

(4) Cleaning up and restoring the origina environment.

How ar e message-sends implemented?

We scan the MESSAGES ligt in the CLASS object of the recipient, looking for a (message-symbol
method) pair that matches our message symbol. If necessary, we scan the MESSAGES lists of the
recipients superclasses too. (xlobj.c:sendmsg().) Once we find it, we basically do a normal function
evaluation. (xlobjl.c.evmethod().) Two oddities. We need to replace the message-symbol by the recipient
on the argument stack to make things look normal, and we need to push an 'object’ stack entry on the
xlenv environment so we remember which class is handling the message.

Page 156 XLISP-PLUSINTERNALS XLISP-PLUS3.0



How is garbage collection implemented?

The dynamic memory pool managed by XLISP consists of a chain of memory * segments* rooted at global
C variable "segs'. Each segment contains an array of "struct node's plus a pointer to the next segment.
Each node contains an_type field and a MARK hit, which is zero except during garbage collection.

XLISP uses a smple, classical mark-and-sweep garbage collector. When it runs out of memory
(fnodes==NIL), it does a recursive traversal setting the MARK flag on al nodes reachable from the
obarray, the three environments xlenv/xlfenv/xldenv, and the evaluation and argument stacks. (A "switch"
on the n_type field tells us how to find al the LVAL dots in the node (plus associated storage), and a
pointer-reversal trick lets us avoid using too much stack space during the traversal.) sweep() then adds all
un-MARKed LVALSs to fnodes, and clears the MARK bit on the remaining nodes. If this fails to produce
enough free nodes, a new segment is malloc()ed.

The code to do this stuff is mostly in xldmem.c.

How is garbage collection of vectors/strings implemented?

In the dildmem.c version, vector/string space is alocated from a memory pool maintained by XLISP, rather
than relying on the C library maloc() and freg() functions. The poal is a linked list of VSEGMENT with
the root vsegments.

When no free memory of a size necessary for an allocation request is available, a garbage collection is
performed. If thereis till no available memory, then a new vector segment is alocated.

The garbage collection process compacts the memory in each vector segment. This is an easy process
because each alocated vector area is pointed to by only one location (in an LVAL), and a back pointer is
maintained from the vector segment to the LVAL. Empty vector segments are returned to the heap using
freg() if there greater than 50% of the vector space is free. Thisis done to reduce thrashing while making
memory available for alocation to LVALS.

How does XL ISP initialize?

A magor confusing aspect of XLISP is how it initializes, and how savefrestore works. This is a multi step
process that must take place in a specific order.

When XLISP sarts, there is no obarray, and in fact no symbols at al. All initia symbols must be created
as part d initidization. In addition the character and small integer cells must be created, and dl the C
variables that point to XLISP symbols must be initialized.

Initidization is mostly performed in xlinit.c, from the function xlinit(). This function is caled from main()
after main parses the command line, calls osinit() to initidize the OS interface, and sets the initid top level
context. This initial context causes a fatal error to occur if any error happens during the initialization
process.

The first step of xlinit() is to cal xIminit(), which is in xldmem.c or didmem.c. This initidizes the pointers
for the memory manager, stacks, creates the small integer and character LVAL segments, and creates
the NIL symbol by filling in the statically alocated NIL LVAL from one that is temporarily created. This
first cal of xiImakesym will do the first garbage collection -- all of the roots used for the mark routine have
been set so that marking will not occur (there is nothing to mark!). It is important, however, that garbage
collection not occur again until initidization is completed. This can be assured by having the alocation
segment size, NNODES, be large enough for the entire initidization.

The second step in xlinit() isto cal xIdbug.c:xldinit() to turn debugging off.

XLISP-PLUS3.0 XLISP-PLUSINTERNALS Page 157



At this point, if arestore is to occur from a workspace file, then the restore is attempted. If the restore is
successful, then initidization is finished. See "How does savelrestore work?' which is the next question.

If the restore fails or there is no file to restore, an initial workspace must be created. This is done by
function initwks(), aso in xlinit.c.

Initwks() starts by calling four initidization functions.

xlsym.c:xlsinit() creates the symbol *OBARRAY* (and sets the variable doarray to point to it), creates
the object array as the value, and enters obarray into the array.

xlsymbols() is called next. It enters al of the symbols referenced by the interpreter into the obarray, and
saves their addresses in C variables. This function is dso caled during restores, so it is important that it
does not change the value of any symbols where the value would be set by restore. If the unbound
indicator symbol does not exist, one is created. Then it puts NIL in the obarray if not already there (NIL
being already created), then all the other symbols are added (if they don't exist), and their addresses saved
in C variables.

This function aso initializes constants such as NIL, T, and Pl. Because a saved workspace might have a
different file stream environment, xlsymbols always initidizes the standard file streams based on the
current XLISP invocation. It builds the structure property for RANDOM-STATE structures. It then
(shudder!) cdls two other initidization functions xlobj.c:obsymbols() and ossymbals (in the appropriate
*gtuff.c file) to enter symbols used in the object feature and operating system specific code, respectively.

Returning to initwks(), two additiona initialization routines are caled. Xlread.c:xlrinit() initidizes the read-
table and installs the standard read macros. Xlobj.c:xloinit() creates the class and object objects.

Since the NIL and *OBARRAY* symbols were created before the unbound marker symbol, initwks sets
the function vaues of these symbols, and of the unbound marker symbol, to be unbound. It then initiaizes
al the globa variables. Findly it creates al the built-in function bindings from the funtab table. The
synonym functions are created last.

How are workspaces saved and restored?

All the work is done in dlimage.c or xlimage.c, depending on the memory management scheme. The basic
trick in a save is that memory locations upon a restore would be entirely different. Because of that,
addresses written out are converted into offsets from the start of the segs LVAL segment list. In the
restore operation, the offset is converted back into an address; if the offset is larger than the allocated
segment memory, additional segment memory is allocated until an address can be calculated.

Looking at the save function, xlisave(char *fname), the argument string is taken as the name of a
workspace file, and a binary file is created of that name. Then a garbage collection is performed since it
would be wasteful to write out garbage.

The size of ftab is written as a vdidity check, figuring that if the configuration changed, then this value
would be different.

The offset of the *obarray* symbol is written next, since obarray is crucia to doing a restore -- it is used
to get the addresses of al the other symbols used in the interpreter. Since NIL is a statically allocated
symbol, the offsets to its function, property list, and printname are written. (1 bet you didn't know you could
define afunction called NIL!)

Now the segs are traversed and all nodes are written out. The nodes are written in the format of a one
byte tag followed by information dependent on the node type. Since many locations in the segment can be
empty, one node type, FREE, has data that sets the next offset in the file, thus alowing skipping of many

Page 158 XLISP-PLUSINTERNALS XLISP-PLUS3.0



locations with a single command. The function setoffset(), called before writing tags in the other cases,
handles writing the FREE entry. CONS, USTREAM, COMPLEX, and RATIO cdls consst of two
pointers, which are written after conversion into offsets. For all other node types, the raw information is
written by writenode(). This could be optimized since not al information is needed (for instance, the
address of arrays won't be needed!)

A terminator entry (FREE with length of zero) is written, and the segs are traversed again, looking for
nodes with attached array/string data and streams. For the types where the attached data is an array, the
array elements (pointers) are converted to offsets and written out. For a string, the characters are written.
For a stream (assuming FILETABLE is used), the file's name and position are written if it is other than
standard input, output, or error (which cannot be saved or restored).

Restoring a workspace is somewhat more difficult. The file is opened and checked for validity. Then the
old memory image is deleted. During the deletion, any open file streams other than standard input, output,
or eror are closed. All of the global memory alocation pointers and stacks are reset, just like in
initidization. Since the fixnum and character segments are of fixed size and need a known location, there
are dlocated. Their vaues, however, will be filled in from the workspace file. This is another wasteful
inefficiency, but at least these segments are small.

The globa pointer obarray is read from the file. As mentioned earlier, the cviptr() function converts the
offset in the file into a physical address, allocating more node segments as necessary. The array portion of
the NIL symbol is dlocated, and its function, property list, and printname pointers are read from the file.

Then the node information is read in. For type FREE, the offset is adjusted. For CONS, USTREAM,
COMPLEX, and (when bignums defined) RATIO the car and cdr pointers are read, for other types, the
LVAL dataisread raw.

The LVAL segments are scanned, and now the vector/string components of nodes are read. Since the
order of nodes is unchanged, the data is read into the correct nodes. For vector types, the size field of the
LVAL is consulted, vector space is allocated, and offsets are read from the file and converted into
pointers. For strings, the string space is alocated and the string is read. For streams other than standard
input, output, or error, the file name and position is read and an attempt is made to open the file. If thefile
can be opened, then it is positioned.

During the scan, for SUBR/FSUBR nodes funtab is consulted and the correct subroutine address is
inserted.

During the whole process, if atagisinvalid or the file size is not correct, afata error occurs.
A garbage collection is performed to initidize the free space for future node allocation.

Finally xlsymbolg) is called, as in the initidization process, so that the C pointers in the interpreter can be
set. This also sets the streams for standard input, output, and error to the correct values.

How do | add a new primitivefn to XL1SP?

Add aline to the end of xlIftab.c:funtab[], and a function prototype to xlftab.h. This table contains a list of
triples:

The first element of each triple is the function name as it will appear to the programmer. Make it al upper
case.

The second element is S (for SUBR) if (like most fns) your function wants its arguments pre-evaluated,
else F (for FSUBR).

XLISP-PLUS3.0 XLISP-PLUSINTERNALS Page 159



The third eement is the name of the C function to call.

Remember that your arguments arrive on the XLISP argument rather than via the usual C parameter
mechanism.

CAUTION: Try to keep your files separate from generic XLISP files, and to minimize the number of
changes you make in the generic XLISP files. This way, youll have an easier time re-ingaling your
changes when new versions of XLISP come out. It's a good idea to put a marker (like a comment with
your initials) on each line you change or insert in the generic XLISP fileset. For example, if you are going
to add many primitive functions to your XLISP, use an #include file rather than putting them all in xIftab.c.

Page 160 XLISP-PLUSINTERNALS XLISP-PLUS3.0



CAUTION: Remember that you usually need to protect the LVAL variables in your function from the
garbage-collector. It never hurts to do this, and often produces obscure bugs if you don't. Generic code for

anew primitive fn:

/* x|l sanmplefun - do usel ess stuff. */
/* Called like (samplefun "(a ¢c b) 1 2.0) */
LVAL x| sanpl ef un()
{
/* Variables to hold the argunents: */
LVAL |list_arg, integer_arg, float_arg

/* Get the argunents, with appropriate errors*/
/* if any are of the wong type. Look in */
/* XLISP.h for macros to read other types of */
/* argurments. Look in xlmath.c for exanples */
/* of functions which can handl e an argunent */
/* which may be either int or float: */

list_arg = xlgalist() ; /[* "XLISP Get A LIST" */
integer _arg = x| gafixnum(); /* "XLISP Get A FIXNUM */
float _arg = x| gaflonum(); /* "XLISP Get A FLONUM */

/* lIssue an error message if there are any extra argunents:

xl'lastarg();

/* Call a separate C function to do the actual */
/* work. This way, the main function can */
/* be called fromboth XLI SP code and C code. */
/* By convention, the name of the XLISP wrapper*/

/* starts with "xI", and the native C function */

/* has the same name mnus the "xI" prefix: */
return sanplefun( list_arg, integer_arg, float_arg );
}

LVAL sanpl efun( list_arg, integer_arg, float_arg )
LVAL |ist_arg, integer_arg, float_arg
{

FI XTYPE val _of _i nteger_arg;

FLOTYPE val _of _fl oat_arg;

/* Variables which will point to Lisp objects: */
LVAL result;

LVAL |ist_ptr;

LVAL float_ptr;

LVAL int_ptr;

/* Protect our internal pointers by */

/* pushing themon the eval uation */

/* stack so the garbage coll ector */

/* can't recycle themin the nmddle */

/* of the routine: */

x| st kcheck(3); /* Make sure follow ng x|l save */
/* calls won't overrun stack. */

xl save(list_ptr); /* Use xlsavel() if you don't */

xl save(float _ptr);/* do an x| stkcheck(). */

x|l save(int_ptr);

XLISP-PLUS3.0 XLISP-PLUSINTERNALS

Page 161



/* Create an internal list structure, protected */
/* agai nst garbage collection until we exit fn: */
list_ptr = cons(list_arg,list_arg);

/* Get the actual values of our fixnumand flonum */
val _of _integer_arg = getfixnun( integer_arg );
val _of float_arg = getflonun( float_arg );

/*******************************************/

/* You can have any anount of internediate */
/* conputations at this point inthe fn... */

/*******************************************/

/* Make new nuneric values to return: */
i nteger_ptr = cvflonun( val _of integer_arg * 3 );
float _ptr = cvflonum( val _of float_arg * 3.0 );

/* Cons it all together to produce a return value: */
result = cons( list_ptr, cons( integer_ptr, cons( float_ptr, NIL ) ) );

/* Restore the stack, cancelling the xlsave()s: */
x| popn(3);
/* Use xlpop() for a single argunent.*/

return result; }

Page 162 XLISP-PLUSINTERNALS XLISP-PLUS3.0



COMPILATION OPTIONS

XLISP-PLUS has many compilation options to optimize the executable for specific tasks. These are the
mogt useful:

1 Available Functions (all turned on by default)

- SRCHFCN supplies SEARCH

- MAPFCNS supplies SOME EVERY NOTANY NOTEVERY and MAP

- POSFCNS supplies POSITION-* COUNT-* and FIND-* functions

- REMDUPS supplies REMOVE-DUPLICATES

- REDUCE supplies REDUCE

- SUBSTITUTE supplies SUBSTITUTE-* and NSUBSTITUTE-*

- ADDEDTAA supplies GENERIC

- TIMES supplies TIME GET-INTERNAL-RUN-TIME GET-INTERNAL-REAL-TIME
and the constant INTERNAL-TIME-UNITS-PER-SECOND

- RANDOM supplies RANDOM-NUMBER-STATE type, *RANDOM-STATE*, and the
function MAKE-RANDOM-STATE. Requires TIMES.

- HASHFCNS supplies SETHASH MAKE-HASH-TABLE REMHASH MAPHASH
CLRHASH and HASH-TABLE-COUNT

- SETS supplies ADJOIN UNION INTERSECTION SET-DIFFERENCE and SUBSETP

- SAVERESTORE supplies SAVE and RESTORE

- GRAPHICS supplies graphic functions (when available)

2. Features (al turned on by default)

- COMPLX adds complex number support including math functions COMPLEX
COMPLEXP IMAGPART REALPART CONJUGATE PHASE LOG FLOOR
CEILING ROUND PI LCM and ASH

- BIGNUMS adds bignum, ratio, and read/print radix support. Requires COMPLX.

- NOOVFIXNUM Check for fixnum overflow, and convert to flonum (only appliesif
BIGNUMS not used)

- PACKAGES uses the packages implementation. Some people find XLISP-PLUS easier
to useif thisis not defined.

- MULVALS multiple value returns

- FILETABLE files referenced via a table -- allows saving and restoring open files (in
WKSfiles), and is required by Microsoft Windows versions. Also alows functions
TRUENAME and DELETE-FILE.

- KEY ARG adds :key keyword option to functions having it

- FROMEND adds the :from-end and :count keywords to functions having them

- AOKEY makes & alow-other-keys functional. Without this gption, al functions behave as
though & dlow-other-keys is always specified.

- APPLYHOOK adds applyhook support

3. Backward compatibility
- OLDERRORS makes CERROR and ERROR work asin XLISP-PLUS 2.1e or earlier,
which is not compatible with more recent versions (or Common Lisp).
- LEXBIND lexical tag scoping for TAGBODY/GO and BLOCK/RETURN, asin
Common Lisp. If not defined, then the original dynamic scoping is used.

XLISP-PLUS3.0 COMPILATION OPTIONS Page 163



4, Environmentd options

- ASCII8 eight bit ASCII character support

- ANSI8 used in addition to ASCII8 for MS Windows character code page

- READTABLECASE adds *readtable-case* and its functionaity

- PATHNAMES allows environment variable to specify search path for RESTORE and
LOAD functions

- BIGENDIANFILE binary files use "bigendian” orientation. Normally this option is defined
when BIGENDIAN (required on bigendian systems) is defined, but this has been made a
separate option to alow file portability between systems.

5. Performance options
- JMAC increases performance dightly, except on 16 bit DOS environments.
- GENERIC use generic bignum to float conversion. Required for bigendian or non |IEEE
floating point systems (such as Macs). Using this selection decreases precision and
increases execution time.

In addition, there are options for various stack sizes, static fixnum values, and various alocation sizes that
can be dtered. They have been set optimally for each compiler/environment and "typical" applications.

Page 164 COMPILATION OPTIONS XLISP-PLUS3.0



INDEX

-, 40; 78
%DOC-FUNCTION, 117
%DOC-STRUCTURE, 117
%DOC-TYPE, 117
%DOC-VARIABLE, 117
&alow-other-keys, 34
&aux, 34

&key, 34

&optiond, 34

&rest, 34

*, 40, 79

*%* , 40

*kk ’ 40

*gpplyhook*, 26; 39
*breakenable*, 22; 39
*command-line*, 40
*debug-io*, 39
*digplace-macros*, 25; 40
*dos-input*, 20; 40
*error-output*, 39
*evahook*, 26; 39
*features*, 31; 40
*float-format*, 40; 96
*gc-flagr, 39

*gc-hook*, 26; 39
*integer-format*, 40; 96

*| oadHfile-arguments*, 20; 40
*modulest, 39; 51
*obarray*, 39

*package*, 39
*print-base*, 40; 96
*print-case*, 32; 40; 96
*print-length*, 40; 96
*print-level*, 40; 96
*random-state*, 40
*ratio-format*, 96
*read-base*, 27
*read-suppress*, 40
*readtable*, 30; 39
*readtable-case*, 32; 40; 96
*gtandard-input*, 39

* standard-output*, 39
*gtartup-functions®, 20; 40
*struct-dots*, 74
*terminal-io*, 39
*top-level-loop*, 40

*tracdimit*, 22; 39
*tracdigt*, 39
*tracenable*, 22; 39
*trace-output*, 39
+, 40; 78

++, 40

+++, 40

1,79

/=, 82
-alow-other-keys, 34
:answer, 38
:gppend, 102
.capitdize, 32
:class, 37
:conc-name, 74
:condtituent, 30
:count, 56; 58; 59
:create, 102
:direction, 102
:downcase, 32
-dement-type, 102

:end, 56; 57; 58; 59; 60; 69; 70; 97; 103

:endl, 56; 60; 61; 70; 71
:end2, 56; 60; 61; 70; 71
-error, 102

:externa, 44; 50
:from-end, 56; 57; 58; 59
if-does-not-exist, 102
if-exists, 102

;indlude, 74

sinherited, 44; 50
;initiakcontents, 68
;initiakelement, 60; 65; 68; 70
sinitiakvaue, 59

;input, 102

;internd, 44; 50

iinvert, 32

;io, 102

;iskindof, 37
:ismemberof, 37

sisnew, 37; 38

‘key, 47; 56; 57; 58; 59; 60; 63; 64; 65; 66; 89

‘mescape, 30
‘messages, 38
‘new, 38
:new-version, 102

XLISP-PLUS 3.0

INDEX

Page 165



‘nicknames, 50 apply, 41
:nmacro, 30 gpplyhook, 26; 106
-output, 102 apropos, 49
-overwrite, 102 apropos-lig, 49
‘preserve, 32 aref, 68
:prind, 37 ARRAY, 110
:print, 108 array-in-bounds-p, 87
‘print-function, 74 arrayp, 87
‘probe, 102 ash, 84
rename, 102 asin, 80
rename-and-delete, 102 asinh, 80
‘respondsto, 37 assert, 107
:sescape, 30 assoc, 64
:set-ivar, 76 assoc-if, 64
:set-pname, 76 assoc-if-not, 64
:show, 37 atan, 80
9ze 54 atanh, 80
:dart, 56; 57; 58; 59; 60; 69; 70; 97; 103 aom, 86; 89
Sartl, 56; 60; 61; 70; 71 backquote, 41
Sart2, 56; 60; 61; 70; 71 baktrace, 106
:storeon, 37; 38 block, 94
:superclass, 37; 38 both-case-p, 72
:supersede, 102 boundp, 88
‘tet, 47; 54; 56; 57; 58; 59; 61; 63; 64; 65; 66; 89 break, 105
‘test-not, 41; 47; 56; 57; 58; 59; 61; 63; 64; 65; butlast, 63

66; 89 byte, 84
:tmacro, 30 byte-pogtion, 84
:upcase, 32 byte-size, 84
:use, 50 car, 62
:verbose, 108 case, 91
:white-space, 30 catch, 91
<, 82 ccase, 106
<= 82 cdr, 62
= 8 ceiling, 78
> 82 cerror, 105
>=, 82 char, 72
1-, 79 char/=, 73
1+, 79 char<, 73
abs, 79 char<=, 73
acons, 62 char=, 73
acos, 80 char>, 73
acosh, 80 char>=, 73
address-of, 110 character, 73; 110
adjoin, 66 characterp, 87
dloc, 109 char-code, 72
dpha-char-p, 72 char-code-limit, 39
and, 89; 90 char-downcase, 72
append, 62 char-equd, 73

Page 166 INDEX XLISP-PLUS3.0



char-greaterp, 73

char-int, 73

char-lesp, 73

char-name, 73

char-not-equal, 73

char-not-greaterp, 73

char-not-lessp, 73

char-upcase, 72

check-type, 107

cis, 81

class, 39

classp, 88

clean-up, 20; 105

clean-up,, 22

cleal, 112

closg, 102

CLOSURE, 110

clrhash, 54

cls, 112

code-char, 72

coerce, 110

color, 112

comma, 41

comma-at, 41

Compeatibility with Common Lisp, 53; 74; 96; 99;
147

Compatibility with previous versons, 94; 96; 101;
103; 105; 147

complement, 41

complex, 81; 110

complexp, 87

concatenate, 55

cond, 90

conjugate, 82

cons, 62; 110

consp, 86

congtantp, 86

continue, 20; 22; 105

copy-dig, 65

copy-lig, 65

copy-seq, 60

copy-symbol, 46

copy-tree, 65

cos, 80

cosh, 80

count, 57

count-if, 57

count-if-not, 57

ctypecase, 107
CXXr, 62

CXXXI, 62

CXXXXT, 62

debug, 106

decf, 48

declare, 46
defclass, 76
defconstant, 45
defing, 76
defmacro, 44
defmethod, 76
defpackage, 49
defparameter, 45
defsetf, 47
defstruct, 74
defun, 44

defvar, 45

delete, 58
delete-duplicates, 59
delete-file, 102
delete-if, 58
delete-if-not, 58
delete-package, 49
denominator, 81
deposit-fidd, 85
describe, 118
digit-char, 73
digit-char-p, 72
do, 93

do*, 93
do-dl-symbols, 50
Documentation, 117
do-external-symbals, 50
dolig, 93
do-symbols, 50
dotimes, 93

dpb, 85

draw, 112
drawrd, 112
dribble, 108
ecase, 106

Edit keys, 20; 119
eighth, 62

dt, 55

endp, 86

eg, 89

eql, 89

XLISP-PLUS 3.0

Page 167



equal, 89
equalp, 89
error, 105
errset, 22; 106
etypecase, 107
evd, 41
evahook, 26; 106
eval-when, 111
evenp, 88
every, 55

exit, 111

exp, 81

expand, 109
export, 50

expt, 81
fboundp, 88
fifth, 62
file-length, 103
file-position, 103

FILE-STREAM, 110

fill, 60
find, 57

find-dl-symbols, 50

find-if, 57
find-if-not, 57
find-package, 50
find-symboal, 50
first, 62
FIXNUM, 110
flatc, 97
flatsize, 97

flet, 91

float, 78

floatp, 86
float-sign, 80
FLONUM, 110
floor, 78
fmakunbound, 45
format, 98
fourth, 62
fresh-ling, 97
FSUBR, 110
funcal, 41
function, 41; 89
functionp, 88
gc, 108

ged, 80

generic, 111

gensym, 44

get, 53

getf, 53

gethash, 54
get-internal-real-time, 109
get-internal-run-time, 109
get-key, 110
get-lambda-expression, 42
get-macro-character, 96
get-output-stream-ligt, 104
get-output-stream-string, 104
glos, 117

go, A

goto-xy, 112

hash, 45

HASH-TABLE, 110
hash-table-count, 54
hash-teble-p, 88

identity, 41

if, 90

imagpart, 82

import, 50

incf, 48

in-package, 50
input-stream-p, 87

ins, 118

insf, 118

Inspect, 118

int-char, 73
integer-length, 84
integerp, 86

intern, 44

internal-time-units-per-second, 39

intersection, 65
isgrt, 81
keywordp, 88
labdls, 91
lambda, 42
last, 63

lcm, 80

Idb, 84

Ido-test, 84
[diff, 66

length, 55

let, 91

letx, 91

list, 62; 89; 110
list*, 62

Page 168

XLISP-PLUS 3.0



lig-dl-packages, 50
lig-length, 63

listp, 86

load, 108

log, 81

logand, 83
logandcl, 83
logandc2, 83
loghitp, 84
logcount, 84

logegv, 83

logior, 83

lognand, 83

lognor, 83

lognat, 83

logorcl, 83

logorc2, 83

logtest, 83

logxor, 83

loop, B
lower-case-p, 72
macroexpand, 42
macroexpand-1, 42
macrolet, 91
make-array, 638
make-hash-table, 54
make-ligt, 65
make-package, 50
make-random-state, 80
make-seguence, 60
make-gtring, 70
make-string-input-stream, 104
make-string-output-stream, 104
make-symbol, 44
makunbound, 45
map, 55

mapc, 64

mapcan, 64
mapcar, 64
mapcon, 64
maphash, 54
map-into, 55

mapl, 64

maplist, 64
mark-as-special, 46
mask-field, 85

max, 79

member, 63; 89

member-if, 63
member-if-not, 63
memoize, 120

merge, 60

min, 79

minusp, 88

mismatch, 61

mod, 79

mode, 112

move, 112

moverd, 112
multiple-value-bind, 43
multiple-value-call, 43
multiple-value-li, 43
multiple-value-progl, 43
multiple-value-setq, 43
nbutlast, 63

nconc, 67

NIL, 39
nintersection, 65
ninth, 62

nodebug, 106

not, 86; 89

notany, 55

notevery, 55

nreconc, 67

nreverse, 55
nset-difference, 65
nset-exclusve-or, 65
nstring-capitaize, 70
nstring-downcase, 70
nstring-upcase, 69
nsublis, 64

nsubst, 64

nsubst-if, 64
nsubst-if-not, 64
nsubstitute, 59
nsubstitute-if, 59
nsubstitute-if-not, 59
nth, 63

nthedr, 63

nth-value, 43

null, 86; 89
NUMBER, 89
numberp, 86
numerator, 81
nunion, 65

object, 39; 89; 110

XLISP-PLUS 3.0

Page 169



objectp, 87

oddp, 88

open, 102
open-stream-p, 87
or, 89; 90
output-stream-p, 87
package-name, 51
package-nicknames, 51
package-obarray, 51
packagep, 88
package-shadowingsymbols, 51
package-used-by-lig, 51
package-use-lig, 51
package-vdid-p, 51
pairlis, 65

peek, 110
peek-char, 101
phase, 82

M, 39

plusp, 88

poke, 110

pop, 47

postion, 57
postion-if, 57
position-if-not, 57
pp, 116

pprint, 97

Pretty print, 116
prinl, 96
prinl-to-string, 97
princ, 96
princ-to-string, 97
print, 96

probe-file, 102
proclam, 46

Profile, 121

prog, 94

prog*, 94

progl, 95

prog2, 95

progn, 95

progv, 94

provide, 51

psetf, 47

psetq, 44

push, 47

pushnew, 47
putprop, 53

quote, 41

random, 80
rassoc, 64
rassoc-if, 64
rassoc-if-not, 64
RATIO, 110
rationa, 78; 89
rationdp, 87

read, 96
read-byte, 103
read-char, 101
read-from-gtring, 97
read-ling, 101
redp, 87

redpart, 81
reduce, 59

rem, 79

remf, 53

remhash, 54
remove, 56
remove-duplicates, 59
remove-if, 56
remove-if-not, 56
remprop, 53
rename-package, 51
replace, 60
require, 51
reset-system, 111
rest, 62

restore, 108
return, 94
return-from, 94
revappend, 63
reverse, 55

room, 109

round, 78

rplaca, 67

rplacd, 67
satisfies, 89

save, 108

search, 56
second, 62

sdf, 36; 39

send, 36; 76
send-super, 36; 76
Set, 44
set-difference, 65
set-exclusive-or, 65

Page 170

XLISP-PLUS 3.0



setf, 47
set-macro-character, 96
Setq, 44
set-stack-mark, 111
seventh, 62
shadow, 52
shadowing-import, 52
sgnum, 79

sn, &

snh, 80

Sixth, 62

deep, 109

some, 55

sort, 56

speciap, 86

sort, 81

dable-sort, 56

Step, 113; 114
Stepper, 114

strcat, 70
STREAM, 89
streamp, 87

sring, 69; 110
sring/=, 70

gring<, 70
gring<=, 70
sring=, 70

sring>, 70
gring>=, 70
string-capitdize, 69
string-downcase, 69
string-equd, 71
string-greaterp, 71
string-left-trim, 69
string-lessp, 71
string-not-equa, 71
string-not-greaterp, 71
string-not-lessp, 71
stringp, 87
string-right-trim, 69
string-trim, 69
string-upcase, 69
STRUCT, 89
aublis, 64

SUBR, 110

subseg, 55

subsetp, 89

ubst, 64

substitute, 58
subdtitute-if, 58
subdtitute-if-not, 58
SYMBOL, 110
symbol-function, 45
symbol-name, 44
symbolp, 86
symbol-package, 52
symbol-plis, 45
symbol-vaue, 44
system, 111

T, 39

tagbody, 94

talp, 63

tan, 80

tanh, 80

tenth, 62

terpri, 97

tfilename option, 20
the, 107

third, 62

throw, 92

time, 109

top-leve, 20; 105
top-level-loop, 20; 111
trace, 105
tracemethod, 77
transcript file, 20
truename, 103
truncate, 78
typecase, 91
type-of, 110
typep, 89

unexport, 52
unintern, 45

union, 65

unless, 90

UNNAMED-STREAM, 110

untrace, 105
untracemethod, 77
unuse-package, 52
unwind-protect, 92
upper-case-p, 72
use-package, 52
vaues, 43
vaues-lig, 43

vector, 68
wfilename option, 20

XLISP-PLUS 3.0

Page 171



when, 90
with-input-from-string, 104
with-open-file, 103
with-open-stream, 103
with-output-to-string, 104
Workspace, 20
write-byte, 103
write-char, 101
XLPATH, 2; 20; 51; 108
yes-or-no-p, 97

y-or-n-p, 97

zerop, 88

Page 172

INDEX

XLISP-PLUS 3.0



