How did you got started with antlr?

The critical moment was in 1988 while working in Paris with my friend Tom Burns, who
later became my business partner at jGuru.com. At the time, Tom and | were working for a
robotics company--I was building a compiler, interpreter, VM, and so on for a robot control
language called Karel. | built the Karel parser with a recursive descent mechanism
because | didn't grok yacc and | knew how to build recursive descent parsers really well.
Tom showed me a section | had forgotten in Niklaus Wirth's book: "Algorithms + Data
Structures = Programs" that discussed how to represent grammars as syntax diagrams
and then how to translate them to Pascal programs that would recognize the syntax. |
looked at it and said, "l could do that automatically".

Fast-forward six months to my second year of graduate school at Purdue University. |
started taking a course from Hank Dietz on how to build parser generators and lexer
generators. As part of the course, | built "yucc" a recursive descent parser generator that
was barely LL(1). ANTLR grew out of the project in that class. | started doing all of the
grammar analysis necessary and really got into that stuff. Too bad | hadn't paid attention
in my automata theory class as an undergraduate.

| was supposed to be studying computer architecture for my masters, but that was not very
interesting to me. Since | was already working on ANTLR for fun, my friend Tom
suggested | turn that into my masters thesis and get the hell out of there. ;) Ultimately, as
you can see, this is all Tom's fault. That explains the mysterious dedication in the
upcoming ANTLR book:

http://www.pragmaticprogrammer.com/titles/tpantir

How does antlr3 compares to antir2 and antir1?

ANTLR v1 was written in C and could generate C, C++ output. It introduced a number of
important features such as semantic predicates and syntactic predicates. It also had a
really nice AST construction facility. v1 also was the first practical parser generator that
used k>1 lookahead. v2 was written (in Java) in a terrible hurry during my start of days at
jGuru as sort of a side project. As a result, | had to cut corners and make a number of
quick decisions. v2 had semantic predicates, but lacked the sophisticated "hoisting"
mechanism from v1. v2 was pretty quirky because | did not have enough time to think
about the design. v1 required the use of a separate lexer generator (called DLG, written
by Will Cohen). v2 used the same recursive descent mechanism for lexers as it did for
parsers, which meant that you could have recursive lexer rules. v2 had C++, C#, Python,
and Java targets.

v3 is a completely rewritten version (again in Java) that | have built very carefully and
slowly over the past four years. The new code base is very clean and has many many
unit tests. After about 20 years of doing research in parser generation, | think | finally
understand the problem. v3 represents my thoughts on the ultimate parser generator
design. There are number of things have changed for the better in v3 including: BSD
license, a brand-new very powerful extension to LL(k) called LL(*), an auto backtracking
mode, partial parsing result memoization to increase the speed of backtracking, a really
nice AST rewrite rule mechanism, integration of the StringTemplate template engine for
generating structured text, improved error reporting and recovery, and a truly rechargeable
code generator. Each target is just a set of templates--you don't have to write code to

http://www.pragmaticprogrammer.com/titles/tpantlr

make a new target for ANTLR. (Oh, and full semantic predicate hoisting is back in).

ANTLR v3 also has the awesome ANTLRWorks grammar development environment,
written by Jean Bovet: http://www.antlr.org/works

Why swing for antlrworks and how is that working out?

We were going for maximum portability, which | believe was the right decision. At least, our
experience so far is that it works pretty well across platforms. Jean Bovet is an expert GUI
builder and worked extremely hard to beat Swing into submission. It is because of his skill
that we were able to get Swing to work so well and across platforms. People always
express shock that ANTLRWorks is written in Swing.

Why LL(k) and how does that compare to other algorithms like
SLR LALR, GLR, CYK, Earley etc?

First, let's get some of the easy relationships out-of-the-way. SLR and LALR are more
efficient but weaker variants of LR, which is weaker than GLR (generalized LR). GLR and
Earley and CYK can deal with the same class of grammars (all context-free grammars),
but GLR is more efficient. GLR is just an LR parser that forks a new LR parser to pursue
ambiguous paths. When static grammar analysis reveals an non-LR decision, a GLR
parser generator simply generates a special state to simply try out the various alternatives
at run time. In a crude sense, a GLR parser uses LR to backtrack across the paths in non-
LR parsing decisions. GLR has best case runtime O(n), but with the worst case of O(n3)
just like CYK and Earley. GLR should be nearly linear for most programming language
grammars.

The most exciting parsing strategy to appear recently is called packrat parsing (by wizard
Bryan Ford). A packrat parser is a top-down recursive descent backtracking parser that
records partial parsing results to ensure linear time complexity, at the cost of some
memory. A packrat parser chooses from among alternatives purely with backtracking.
Bryan Ford also defined PEGs (parser expression grammars) that have no strict ordering
with GLR, because there is at least one PEG that is not GLR. Bryan extended and
formalized my original syntactic predicates into these really cool PEGs. | have added his
PEG technology to ANTLR via an auto backtracking feature. So, ANTLR can deal with just
about any grammar you give it now and parse the associated language with linear time
complexity.

There is an interesting relationship to point out: GLR is to Earley as ANTLR is to packrat.
GLR is more efficient than Earley because GLR relies on traditional LR parsing for all but
the non-LR decisions. Similarly, ANTLR is more efficient than a packrat parser because it
uses an LL-based parser for all but the non-LL decisions. Furthermore, ANTLR's LL(*)
algorithm is much stronger than the traditional LL(k), thereby reducing even further the
amount of backtracking it has to do (due to fewer non-LL(*) decisions).

ANTLR's new LL(*) algorithm allows parser lookahead to roam arbitrarily far ahead looking
for a token or sequence that disambiguates a decision. LL(k) can only look a fixed k
symbols ahead. It is the difference between using a cyclic DFA and an acyclic DFA to
make lookahead decisions.

When you put it all together, ANTLR v3 is as powerful as any other current parsing

http://www.antlr.org/works

technique. However, | think you will find that it is more efficient than the others. Perhaps
more importantly, ANTLR is more natural to use because it builds human-
readable/debuggable recursive descent parsers and allows arbitrary actions anywhere in a
grammar.

Why use a custom DSL with antlr than xml?

XML is a data format not a human interface (it's a parse tree rather than the sentence). |
cannot stand typing/reading XML. Remember, being an expert in XML is like being an
expert in comma separated values. Cracks me up that there are conferences on this data
format. | carefully crafted my argument that "Humans should not have to grok XML" here:

http://www-128.ibm.com/developerworks/xml/library/x-sbxml.html

What style of "DSLs" or "little languages" would you
recommend or NOT recomment antir?

Well, ANTLR is great for "heavy lifting". If you know Ruby, you can probably implement a
teeny little DSL very quickly because it is so flexible. | mean this not because it is a nice
language to write in, but because it has optional parentheses on method calls.
Consequently, you can pretty much make Ruby code look like anything you want. Cue
ruby on rails, rake, etc...

As you might expect, | am pretty fast at building little languages with ANTLR, but | use sed
and awk to do quick little translations. Heck, | can even do some pretty fancy footwork in
Emacs for one-off translations.

What types of languages is antir best at? Are there any that
antlr is not suited for? (what are alternatives)?

| don't think there is a classification | can give you here. If you are building a language,
ANTLR is a good approach unless it is so small you can do it faster in the tools | mention
above. When your implementation starts to look like a handbuilt parser, though, you should
step up to ANTLR for that task.

How does antlr make it easier to make "user friendly" parsers
with good error reporting (versus what you would do
yourself)?

ANTLR automatically generates parsers that provide excellent error messages. ANTLR
gives you a "user friendly" parser for free. For example, you automatically get messages
such as

line 102:34 mismatched input ;' expecting ')’

The parser will suppress any further syntax errors until the parser properly resynchronizes.
By "resynchronize", | mean that ANTLR-generated parsers also automatically recover very

http://www-128.ibm.com/developerworks/xml/library/x-sbxml.html

well from errors. If you forget a')', the parser will pretend it saw it anyway and keep going
etc...

Good error messages can even help during development of a grammar because you will
have a lot of bugs among the rules. Good error messages help you track down these
problems. You can easily override a method in your parser to generate detailed errors
such as:

line 802:71 [program, method, stat, expr, atom] no viable alternative,
token=[@2921,802:71=";",<7>,6092:6093] (decision=5 state 0)
decision=<<35:1: atom : (INT | '(' expr')');>>

Some people claim that they can do very could error reporting and recovery in handbuilt
parsers. This is true, but the reality is that parser generators don't get tired whereas
programmers do. Consequently, ANTLR will generate much better error messages than
you could possibly do by hand for a large grammar. ANTLR gives you all flexibility you
have in handbuilt recognizers. For example, you can trap recognition exceptions wherever
you want just like in regular code.

How does antlr compares to javacc and other known parsers?

Well, ANTLR v3 is very similar still to javacc, though v3 now has the auto backtracking and
LL(*) features that give it a good boost. ANTLR v3's new AST rewrite mechanism is also
unavailable in other parser generators; it effectively uses a parser grammar to tree
grammar mapping to define what trees should look like.

Yacc is still used by a frightening number of people, probably just because that is what
they grew up using. Well, a lot has changed in 30 years since yacc came out. There are a
number problems with yacc. Two of the biggest are: lack of good error reporting and
sensitivity to action placement. It is notoriously difficult to get good error messages and
error recovery using yacc (much of the problem stems from the bottom up approach of LR-
based parsers).

When it comes to actions, yacc can be really frustrating. Just when you get your grammar
to recognize all of your test cases, inserting a single action can cause a grammar
ambiguity. This ambiguity can break your grammar and make your input tests fail. LR-
based parsers can only execute actions on the right edge of an alternative, because that is
the only place the parser knows precisely where it is. To allow actions at non-right edges,
yacc splits the rule to get the action on the right edge of a new rule. Unfortunately, splitting
the rule can introduce ambiguities. The worst-case scenario is an action on the left edge
of every alternative in an LR grammar. Due to rule splitting, the LR parser is reduced in
strength to that of an LL parser.

The list goes on and on. For example, yacc has no support for building trees and has very
primitive attribute handling. Yacc was great in its time, but there are many better parser
generators available.

JavaCC is very similar to the previous incarnation of ANTLR, v2; choosing between them
was really a matter of style as they were about as powerful and generated about the same
thing with some minor differences (oh, | think JavaCC was a little faster than ANTLR v2).

With the introduction of ANTLR v3, | believe that the choice is now very clearly in ANTLR's

favor as it represents a whole new generation of software (Sriram Sankar, supersmart
author of JavaCC, has been too busy in industry to make a new version of JavaCC). To
summarize the key advantages (which ANTLR v3 has over most of the parser generators
as well):

e LL(*) parsing technology that is much more forgiving in that it accepts many more

grammars

ANTLRWorks grammar development environment

AST construction facilities via rule rewrites

Tree grammars that resulting tree walkers so you don't have to build them by hand

StringTemplate integration for emitting structure text (i.e., code generation)

Sophisticated semantic and syntactic predicates mechanisms

Auto-backtracking so you can type in any old grammar you want and have ANTLR

just figured out at runtime (memoization keeps us down to linear parsing time)

e V3 supports many different languages at this point with many others on their way;
even Ada!

e A carefully written book that makes it much easier to learn

Any chance of getting rid of antlr namespaced runtime
dependency? (and inlining by default) - also, why is there a
runtime?

Do you mean generating only the necessary runtime support into the output so you don't
have a runtime library? If so, | think ANTLR will always have a runtime library dependency.
There's just too much code to generate. It would also make it hard to fix bugs because
people have to regenerate their parsers to get the fixed support code in their parsers.

How can "downstream" users like us contribute back to antir?
is everything controlled tightly through ter or will he open it up
to contributors one day?

For now, | have been extremely strict about who can touch the code base. Unlike most
projects in academia, none of my graduate students have touched it. ;) | do welcome
bug fixes and reports, which | require people to submit through a click-wrap license. This
allows me to guarantee an untainted code base, which makes big companies much more
comfortable using my software. | have added a page to describe some of the projects |
would like people to work on however:

http://www.antlr.org/summer-of-code/2007/index.html

What's next for antir?

Incremental parsing is the first thing, which allows you to take any grammar and use it in
an IDE. Then, AST construction from tree parsers (which is currently missing). I'm
contemplating the idea of starting another book: "The ANTLR Cookbook: The taste of
venison". 'course no publisher will let me get away with that subtitle, but hey it's funny. |
am also going to work on a language textbook that focuses on language translation, as
opposed to all of the other compiler textbooks.

http://www.antlr.org/summer-of-code/2007/index.html

	How did you got started with antlr?
	How does antlr3 compares to antlr2 and antlr1?
	Why swing for antlrworks and how is that working out?
	Why LL(k) and how does that compare to other algorithms like SLR LALR, GLR, CYK, Earley etc?
	Why use a custom DSL with antlr than xml?
	What style of "DSLs" or "little languages" would you recommend or NOT recomment antlr?
	What types of languages is antlr best at? Are there any that antlr is not suited for? (what are alternatives)?
	How does antlr make it easier to make "user friendly" parsers with good error reporting (versus what you would do yourself)?
	How does antlr compares to javacc and other known parsers?
	Any chance of getting rid of antlr namespaced runtime dependency? (and inlining by default) - also, why is there a runtime?
	How can "downstream" users like us contribute back to antlr? is everything controlled tightly through ter or will he open it up to contributors one day?
	What's next for antlr?

