
Discrete Mathematics SNC MATH 341

 Page 1 of 2

FINITE STATE MACHINES

A finite state machine (FSM) consists of a set of states, a set of transitions, and a string of input
data. In the FSM shown below, the named ovals represent states, and the arrows connecting the
states represent transitions. The FSM is designed to recognize a list of C++ identifiers and
nonnegative integers, assuming that the items are ended by one or more blanks, and that a period
marks the end of all the data. The trace below shows how the diagrammed machine would process a
string composed of one blank, the digits 9 and 5, two blanks, the letter K, the digit 9, one blank, and
a period. The machine begins in the start state.

Here is a trace of the execution of this FSM when given the data: “ 95 K9 .”

State Next Character Transition
start ‘ ‘ 3
start ‘9’ 1
buildNum ‘5‘ 9
buildNum ‘ ‘ 10
number Output number message
start ‘ ‘ 3
start ‘K’ 4
buildId ‘9’ 6
buildId ‘ ‘ 8
identifier Output identifier message
start ‘.’ 2
stop

Discrete Mathematics SNC MATH 341

 Page 2 of 2

Consider writing a program that uses an enumerated type to represent the names of the six states.
Your program should process a correctly formatted line of data, identifying each data item. Here is
a sample of correct input and output. Of course, your output should be even prettier… And you
should consider what happens if your program receives BAD input, like “ 3#Xy! 4,5-Z .”

Input: rate R2D2 48 2 time 555666 .

Output: rate - Identifier

R2D2 - Identifier
48 - Number
2 - Number
time - Identifier
555666 - Number

Use the following code fragment in your main program (or, even better, in a driver function called
FiniteStateMachine that is called by main), and design function Transition to return the
next state for all the enumerated transitions of the finite state machine. If you include the header file
ctype.h, you can use the library function isdigit which returns 1 if called with a digit
character, 0 otherwise. Similarly, the function isalpha checks whether a character is a letter.
When your program correctly models the behavior of the FSM shown, extend the FSM and your
program to allow optional signs and optional fractional parts (i.e., a decimal point followed by zero
or more digits) in numbers.

STATE currentState; // STATE is an enumeration…
char cInputChar; // the next input character read

currentState = STATE_START; // begin in the “start state”

do
{
 // handle the two “null transition” cases: identifier, number

 if (currentState == STATE_IDENTIFIER) // have identifier
 {
 cout << “ - Identifier” << endl;
 currentState = STATE_START;
 }

 else if (currentState == STATE_NUMBER) // have a number
 {
 cout << “ - Number” << endl;
 currentState = STATE_START;
 }

 cInputChar = cin.get (); // get next char

 if (cInputChar != ‘ ‘) // echo if not WS
 cout << cInputChar;

 currentState = Transition (currentState, cInputChar);

} while (currentState != STATE_STOP); // loop ‘til done

